1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
3 years ago
15

A company makes steel lids that have a diameter of 13 inches what is the area of each lid

Mathematics
1 answer:
harkovskaia [24]3 years ago
8 0
The areas of a. circle is
\pi r ^{2}
the diameter is 2 times the radius, therefore
π (13/2)^2=132.665

Answer: about 132.7 in^2
You might be interested in
34. A MasterCard statement shows a balance of $510 at 13.9% compounded monthly. What monthly payment will pay off this debt in 1
bixtya [17]

Answer:

The monthly payment is $35.10.

Step-by-step explanation:

p = 510

r = 13.9/12/100=0.011583

n = 12+4=16

The EMI formula is :

\frac{p\times r\times(1+r)^{n} }{(1+r)^{n}-1 }

Now putting the values in formula we get;

\frac{510\times0.011583\times(1+0.011583)^{16} }{(1+0.011583)^{16}-1 }

=> \frac{510\times0.011583\times(1.011583)^{16} }{(1.011583)^{16}-1 }

= $35.10

Therefore, the monthly payment is $35.10.

8 0
3 years ago
A carpool service has 2,000 daily riders. A one-way ticket costs $5.00. The service estimates that for each $1.00 increase to th
solmaris [256]

Answer:

Total number of riders that ride on carpool daily = 2000

Total Cost of one way ticket = $ 5.00

Total Amount earned if 2000 passengers rides daily on carpool = 2000 × 5

                                                                                                            = $10,000

If fare increases by $ 1.00

New fare = $5 + $1    

               = $6

Number of passengers riding on carpool = 2,000 - 100 = 1,900

If 1,900 passengers rides on carpool daily , total amount earned ,if cost of each ticket is $ 6 = 1900 × $6 = $11400

As we have to find the inequality which represents the values of x that would allow the carpool service to have revenue of at least $12,000.

For $ 1 increase in fare = (2,000 - 1 × 100) passengers

For $ x increase in fare, number of passengers = 2,000 - 100·x

                                                         = (2,000 - 100·x) passengers

New fare = 5 + x

New Fare × Final Number of passengers ≥ 12,000

(5+x)·(2,000 - 100 x) ≥ 12,000

5 (2,000 - 100 x) + x(2,000 - 100 x) ≥ 12,000

10,000 - 500 x + 2,000 x - 100 x² ≥ 12,000

100 - 5 x + 20 x - x² ≥ 120

- x² + 15 x +100 - 120 ≥ 0

-x² + 15 x -20 ≥ 0

x² - 15 x + 20 ≤ 0

⇒ x = 1.495

x ≥ $ 1.495, that is if we increase the fare by this amount or more than this the revenue will be at least 12,000 or more .

Also, f'(x) = 0 gives x = 7.5

⇒ The price of a one-way ticket that will maximize revenue is $7.50

7 0
2 years ago
HELP PLEASEEEEEEEEE.........!!!!!!!!!!!!!!!!​
den301095 [7]

Answer:

x = 65

Step-by-step explanation:

Angles are equal because of the vertical angle thm

2x + 15 = 145

2x = 130

x = 65

7 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
Given f(x)=-4x+7 find f(2) how do i slove this
yan [13]

Answer:

-1

Step-by-step explanation:

given f(x)=-4x+7 find f(2)

f(2) means question : if x=2, f(2)=?

f(2)= -4x2+7=-1

8 0
3 years ago
Other questions:
  • How do you say 4.10 in word form
    6·2 answers
  • Let X be a binomial random variable with p = 0.7 and n = 10. Calculate the following probabilities from the binomial probability
    10·1 answer
  • Evaluate this piecewise function
    11·1 answer
  • Which expression is equivalent to –(3 + 4x)?
    13·1 answer
  • Which of the following are parallel to
    12·2 answers
  • How many deli sandwiches did she make?<br> Please help me.
    6·1 answer
  • A diver descended 20 feet in 5 seconds. What is the average rate per second that he traveled? Explain how you can use integer ti
    14·2 answers
  • Which number sentence is true <br> 4.05=0.45<br> 4.05&lt;0.45<br> 0.45&gt;0.5<br> 0.45&lt;0.5
    13·1 answer
  • Find the solution to each system by "GRAPHING"<br> y=x-3<br> y= -1/2x + 3
    9·1 answer
  • 2πr²+πrh=S<br> Solve for r
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!