See this suggested solution.
1. Let a force F' is the vector sum of the forces P and Q, then it is shown on the attached picture and marked with red color.
2. according to the condition the force F holds the object, then F should have the same length as the force F' and the opposite direction.
3. using the conditions described in 2. the answer is C.
Answer:
use hot water
Explanation:
hot water helps dissolve things faster
Yes. If your smartphone was floating in front of your face, motionless
relative to you, it would require a force to start it moving toward you or
away from you.
But there's no minimum force required. ANY force, no matter how small,
even smaller than the smallest force that you can imagine, would set it in
motion.
The thing is, though, that the smaller the force acting on it, the smaller
acceleration it would get, and the slower it would move away from where
it is.
So if, say, you wanted to send it across the crew compartment and over
to your sleeping bag on the wall, and you had all day to watch it mope
along over there, you might breathe on it, and the force of your breath
would set it in slow motion in that direction. But if you wanted to throw it
at your crewmate, you'd need to give it more force.
2) b) The height above the surface of the earth
3) b) air pressure differences that make air rise or sink
4) a) TC (I'm not sure about this)
5) I don't know this one. Sorry :(
6) a) true
7) a) true
8) b) false (I'm not sure about this)
Sorry I couldn't answer all your questions, but I hope this helps!
1. Sound waves produced by a vibrating object are compressional waves.
2. Loudness is the human perception of sound wave intensity.
3. The process of detecting objects by bouncing sounds off them is called echolocation.