Coronoid process of the ulna
Answer: The answer is False
Explanation: This is for the one's in apex <>
Answer:
B) t = 1.83 [s]
A) y = 16.51 [m]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 0
Vo = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time [s]
Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.
A) The maximum height is reached when the final velocity of the ball is zero.
0 = 18 - (9.81*t)
9.81*t = 18
t = 18/9.81
t = 1.83 [s], we found the answer for B.
Now using the following equation.

where:
y = elevation [m]
Yo = initial elevation = 0
y = 18*(1.83) - 0.5*9.81*(1.83)²
y = 16.51 [m]
The answer is evolution. When a specifies evolves over time they change and adapt to their environment.
Answer:
Explanation:
Given that,
Frequency of radio signal is
f = 800kHz = 800,000 Hz.
Distance from transmitter
d = 8.5km = 8500m
Electric field amplitude
E = 0.9 V/m
The average energy density can be calculated using
U_E = ½•ϵo•E²
Where ϵo = 8.85 × 10^-12 F/m
Then,
U_E = ½ × 8.85 × 10^-12 × 0.9²
U_E = 3.58 × 10^-12 J/m²
The average electromagnetic energy density is 3.58 × 10^-12 J/m²