Explanation:
Mass of the astronaut, m₁ = 170 kg
Speed of astronaut, v₁ = 2.25 m/s
mass of space capsule, m₂ = 2600 kg
Let v₂ is the speed of the space capsule. It can be calculated using the conservation of momentum as :
initial momentum = final momentum
Since, initial momentum is zero. So,



So, the change in speed of the space capsule is 0.17 m/s. Hence, this is the required solution.
Answer:
C = 1.01
Explanation:
Given that,
Mass, m = 75 kg
The terminal velocity of the mass, 
Area of cross section, 
We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,
R = W
or

Where
is the density of air = 1.225 kg/m³
C is drag coefficient
So,

So, the drag coefficient is 1.01.
Answer:
a = 3.61[m/s^2]
Explanation:
To find this acceleration we must remember newton's second law which tells us that the total sum of forces is equal to the product of mass by acceleration.
In this case we have:
![F = m*a\\\\m=mass = 3.6[kg]\\F = force = 13[N]\\13 = 3.6*a\\a = 3.61[m/s^2]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5C%5C%5Cm%3Dmass%20%3D%203.6%5Bkg%5D%5C%5CF%20%3D%20force%20%3D%2013%5BN%5D%5C%5C13%20%3D%203.6%2Aa%5C%5Ca%20%3D%203.61%5Bm%2Fs%5E2%5D)
Answer:
36 grams of water
Explanation:
mass of H2O = 0.5 x 18 = 9g
Answer:
223.25
Explanation:
The thermal conductivity of an object is defined as the measure or the ability of the object to transfer heat or conduct heat through its body.
In the context, the thermal conductivity of the material is given as

And it is given that :
1 Btu = 1055 J
1 ft = 0.3048 m

We know that 1 h = 3600 s
So the thermal conductivity of the material in
is :
Thermal conductivity :


= 223.25