I think the answer will be A
Answer:
1 millions times stronger
Answer
![200km {h}^{ - 2}](https://tex.z-dn.net/?f=200km%20%7Bh%7D%5E%7B%20-%202%7D%20)
Explanation
![Acceleration = \frac{final \: \: \: velocity - initial \: \: velocity }{time} \\ = \frac{(40 - 30)km {h}^{ - 1} }{0.05h} \\ = \frac{10}{0.05} \\ = 200km {h}^{ - 2}](https://tex.z-dn.net/?f=Acceleration%20%3D%20%20%5Cfrac%7Bfinal%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20velocity%20-%20initial%20%5C%3A%20%20%5C%3A%20velocity%20%7D%7Btime%7D%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B%2840%20-%2030%29km%20%7Bh%7D%5E%7B%20-%201%7D%20%7D%7B0.05h%7D%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B10%7D%7B0.05%7D%20%20%5C%5C%20%20%3D%20200km%20%7Bh%7D%5E%7B%20-%202%7D%20)
Hope this helps you.
Let me know if you have any other questions :-):-)
Answer:
The number of revolutions is 44.6.
Explanation:
We can find the revolutions of the wheel with the following equation:
![\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Comega_%7B0%7Dt%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Calpha%20t%5E%7B2%7D)
Where:
: is the initial angular velocity = 13 rad/s
t: is the time = 8 s
α: is the angular acceleration
We can find the angular acceleration with the initial and final angular velocities:
![\omega_{f} = \omega_{0} + \alpha t](https://tex.z-dn.net/?f=%20%5Comega_%7Bf%7D%20%3D%20%5Comega_%7B0%7D%20%2B%20%5Calpha%20t%20)
Where:
: is the final angular velocity = 57 rad/s
![\alpha = \frac{\omega_{f} - \omega_{0}}{t} = \frac{57 rad/s - 13 rad/s}{8 s} = 5.5 rad/s^{2}](https://tex.z-dn.net/?f=%20%5Calpha%20%3D%20%5Cfrac%7B%5Comega_%7Bf%7D%20-%20%5Comega_%7B0%7D%7D%7Bt%7D%20%3D%20%5Cfrac%7B57%20rad%2Fs%20-%2013%20rad%2Fs%7D%7B8%20s%7D%20%3D%205.5%20rad%2Fs%5E%7B2%7D%20)
Hence, the number of revolutions is:
![\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2} = 13 rad/s*8 s + \frac{1}{2}*5.5 rad/s^{2}*(8 s)^{2} = 280 rad*\frac{1 rev}{2\pi rad} = 44.6 rev](https://tex.z-dn.net/?f=%20%5Ctheta%20%3D%20%5Comega_%7B0%7Dt%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Calpha%20t%5E%7B2%7D%20%3D%2013%20rad%2Fs%2A8%20s%20%2B%20%5Cfrac%7B1%7D%7B2%7D%2A5.5%20rad%2Fs%5E%7B2%7D%2A%288%20s%29%5E%7B2%7D%20%3D%20280%20rad%2A%5Cfrac%7B1%20rev%7D%7B2%5Cpi%20rad%7D%20%3D%2044.6%20rev%20)
Therefore, the number of revolutions is 44.6.
I hope it helps you!
Remember that the speed of a wave is the product of both the wavelength and the frequency of the wave.
First convert the units to m and then multiply the values to calculate its propagation or wave speed.
C = lambda • frequency.