Gravity obeys the inverse square law. At 6400 km above the center of the Earth (Earth's surface) you weigh x. Twice that reduces your weight to 1/4th. Four times that height reduces your weight to 1/16th. 4 times 6400 km is 25,600 km. But that is above the center of the earth, and the question requests the height above the surface, so we deduct 6400 km to arrive at our final answer: 19,200 km.
Incidentally, it doesn't exactly work the opposite way. At the center of the Earth the mass would be equally distributed around you, and you would therefore be weightless.
Answer: Increasing the frequency does not increase the wavelength. They are inversely related.
Explanation:
As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.
The sun provides a handy benchmark for describing other stars. The mass of this solar system's sun gives us a unit for measuring other stars' masses.
Answer:
9800 m
Explanation:
During acceleration, given:
v₀ = 0 m/s
a = 39.2 m/s²
t = 10.0 s
Find: v and Δy
v = at + v₀
v = (39.2 m/s²) (10.0 s) + 0 m/s
v = 392 m/s
Δy = v₀ t + ½ at²
Δy = (0 m/s) (10.0 s) + ½ (39.2 m/s²) (10.0 s)²
Δy = 1960 m
During free fall, given:
v₀ = 392 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (392 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 7840 m
Therefore, h = 1960 m + 7840 m = 9800 m.