Answer:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field, direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
Explanation:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field and direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
The magnetic force is given by the charge times the vector product of velocity and magnetic field. While gravitational force is given by the square of the particle mass divided by the square its distance of separation. Also electric forces is given by the square of the charge magnitude divided by the square its distance separation.
Answer:
k = 4422.35 KN/m
Explanation:
Given that
Frequency ,f= 29 Hz
m = 7.5 g
Natural frequency ω
ω = 2 π f
We also know that for spring mass system
ω ² m =k
k=Spring constant
So we can say that
( 2 π f)² = m k
By putting the values
(2 x π x 29)² = 7.5 x 10⁻³ k
33167.69 = 7.5 x 10⁻³ k
k=4422.35 x 10³ N/m
k = 4422.35 KN/m
Therefore spring constant will be 4422.35 KN/m
Acceleration (magnitude anyway) = (change in speed) / (time for the change) .
Change in speed = (10 - 30) = -20 m/s
Time for the change = 4.0sec
Magnitude of acceleration = -20/4 = <em>-5 m/s² </em>
Magic magic and more magic
Newton's second law of motion. F = m a .