<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
Answer:
T=26.03 N
Explanation:
Given that
Distance between poles = 12 m
Mass of block m= 4 kg
Sag distance = 5 m
Lets take tension in the clothesline is T.
The component of tension in vertical direction will be T cosθ.
By force balancing
2 T cosθ = 40
here 
θ=39.80°
2 T cos39.8 = 40
T=26.03 N
Answer:
2.75 m/s^2
Explanation:
The airplane's acceleration on the runway was 2.75 m/s^2
We can find the acceleration by using the equation: a = (v-u)/t
where a is acceleration, v is final velocity, u is initial velocity, and t is time.
In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1
a = 2.75 m/s^2