Intermolecular forces are forces that keep molecules together. For example, the forces between two water molecules. The stronger the intermolecular forces are, the more "solid" is the matter going to be, meaning that the intermolecular forces are the strongest in solids and weakest in gases.
Make sure not to confuse intERmolecular forces (forces between *molecules*) and intRAmolecular forces (forces between *atoms* that make up a molecule).
Explanation:
It is given that, a long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire.
The charge per unit length of the wire is
and the net charge per unit length is
.
We know that there exist zero electric field inside the metal cylinder.
(a) Using Gauss's law to find the charge per unit length on the inner and outer surfaces of the cylinder. Let
are the charge per unit length on the inner and outer surfaces of the cylinder.
For inner surface,



For outer surface,



(b) Let E is the electric field outside the cylinder, a distance r from the axis. It is given by :


Hence, this is the required solution.
Answer: Having Pure Water Is Zero.
Explanation: ...
Mass is the amount of matter in an object whereas weight is the force of gravity acting on the mass of an object. Different planets exert a different force of gravity on an object-meaning that an object's weight will change depending on the force of gravity acting on it, but it's mad will remain unchanged.
Answer:
x = 727.5 km
Explanation:
With the conditions given using trigonometry, we can find the tangent
tan θ = CO / CA
With CO the opposite leg and CE is the adjacent leg which is the distance from the Tierral to Sun
D =150 10⁶ km (1000m / 1 km)
D = 150 10⁹ m.
We must take the given angle to radians.
1º = 3600 arc s
π rad = 180º
θ = 1 arc s (1º / 3600 s arc) (pi rad / 180º) =
θ = 4.85 10⁻⁶ rad
That angle is extremely small, so we can approximate the tangent to the angle
θ = x / D
x = θ D
x = 4.85 10-6 150 109
x = 727.5 103 m
x = 727.5 km