When person is observing destructive interference at 0.20 m distance from the equidistant position then we can say that path difference must be equal to half of the wavelength
now we will have

now we know that
y = 0.20 m
d = 2.4 m
L = 10 m
now here we have


now frequency of wave is given as


Answer: 131.14km per day
Explanation: since the second half of the terns migration takes 122 days we can assume that the full migration would take 244 days. using this we can divide the total distance by the total amount of days it takes (because speed = distance/time) which is 32,000/244, which would be 131.14
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Answer:
MRCORRECT has answered the question
Explanation:
surface tension of water helps creatures(mostly of insecta class such as water striders) to walk on water. . it also helps water to move up the xylem tissue ofhigher plants without breaking up
Kinetic energy is the energy of motion.
The formula for kinetic energy is given as
KE = (0.5) m v²
where m = mass of object , v = speed of object.
an object having some speed and mass will have kinetic energy while an object at rest will not have any kinetic energy since the speed of object at rest is zero.
Since at rest speed is zero. an object has kinetic energy only when it is in motion.