Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Answer:
A
Explanation:
We know the force is (16N-12), which is 4N, and we know the acceleration is 2 m/s^2. Meaning, we can solve the formula m = F / a (mass equals force divided by acceleration), and we get 2kg.
Answer:
The angular velocity is
5.64rad/s
Explanation:
This problem bothers on curvilinear motion
The angular velocity is defined as the rate of change of angular displacement it is expressed in rad/s
We know that the velocity v is given as
v= ωr
Where ω is the angular velocity
r is 300mm to meter = 0.3m
the radius of the circle
described by the level
v=1.64m/s
Making ω subject of the formula and solving we have
ω=v/r
ω=1.64/0.3
ω=5.46 rad/s
FORCE-physical power or strength possessed by a living being:
He used all his force in opening the window.
MOTION-the action or process of moving or of changing place or position; movement.