Heat due to the amount of density difference within a fluid
Answer:
Explanation:
The force exerted in a magnetic field is given as
F = q (v × B)
Where
F is the force entered
q is the charge
v is the velocity
B is the magnetic field
Given that,
The magnetic field is
B = 2•i + 4•j. T
The velocity of the electron is
v = 2•i + 6•j + 8•k. m/s
Also, the charge of an electron is
q = -1.602 × 10^-19 C.
Then note that,
V×B is the cross product of the speed and the magnetic field
Then,
F = q (V×B)
F = -1.602 × 10^-19( 2•i + 4•j +8•k × 2•i + 4•j)
Note
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
F = -1.602 × 10^-19[(2•i + 4•j +8•k) × (2•i + 4•j)]
F = -1.602 × 10^-19 [2×2•(i×i) + 2×4•(i×j) + 4×2•(j×i) + 4×4•(j×j) + 8×2•(k×i) + 8×4•(k×j)]
F = -1.602 × 10^-19[4•0 + 8•k + 8•-k + 16•0 + 16•j + 32•-i]
F = -1.602 × 10^-19(0 + 8•k - 8•k + 0 + 16•j - 32•i)
F = -1.602 × 10^-19(16•j - 32•i)
F = -1.602 × 10^-19 × ( -32•i + 16•j)
F = 5.126 × 10^-18 •i - 2.563 × 10^-18 •j
Then, the x component of the force is
Fx = 5.126 × 10^-18 N
Also, the y component of the force is
Fy = -2.563 × 10^-18 N
Answer:
Check the explanation
Explanation:
This is the step by step explanation to the above question:
![v_i = v [ f_L *(v - v_b) - f_s*(v + v_b)] / [f_L * (v - v_b) + f_s*(v +v_b)]](https://tex.z-dn.net/?f=v_i%20%3D%20v%20%5B%20f_L%20%2A%28v%20-%20v_b%29%20-%20f_s%2A%28v%20%2B%20v_b%29%5D%20%2F%20%5Bf_L%20%2A%20%28v%20-%20v_b%29%20%2B%20f_s%2A%28v%20%2Bv_b%29%5D)
= v * (83.1 * (v-4.3) - 80.7 ( v+4.3))/ [83.1 *(v - 4.3) + 80.7*(v + 4.3)]
v = 344 m/s
vi = 344 * ( 83.1* (344-4.3) - 80.7*(344+4.3) ) / (83.1 *(344 - 4.3) + 80.7*(344 + 4.3))
= 0.74 m/s