The total momentum before and after the collision must be conserved.
The total momentum before the collision is:

where m1 and m2 are the masses of the two players, and

and

their initial velocities. Both are considered with positive sign, because the two players are running toward the same direction.
The final momentum is instead

because now the two players are moving together with a total mass of (m1+m2) and final speed vf.
By requiring that the momentum is conserved

we can calculate vf, the post-collision speed:


and the direction is the same as the direction of the players before the collision.
Answer:
(a)
4) The magnitude of buoyancy force is equal to that of ball's weight
(b) The magnitude of buoyancy force is larger than that of ball's weight. The tension on second ball is 158 newtons
(c) The magnitude of buoyancy force is larger than that of ball's weight. The tension on third ball is 218 newtons.
Explanation:
Newton's third law of motion states that forces always occurs in pairs. For every reaction there is an equal an opposite reaction. For Ball 1 the magnitude of buoyancy force is equal to that of ball's weight. Buoyancy force works against the gravity. Ball 2 and ball 3 have same buoyancy force. The buoyancy force for ball 2 and ball 3 is larger than that of ball's weight.
Tension = Wb - fb
Tension for Ball 2 = 1000 - 842 = 158 newtons
Tension for Ball 3 = 1000 - 1218 = -218 newtons
Answer:
the responding variable is the water boiling
Explanation:
a responding variable is the same thing as a dependent variable and an independent variable you change the independent variable is the amount of salt, the control group is how long water takes to boil without adding salt, and a constant is the same amount of water
<span>The higher the value of the coefficient of friction, the more the resistance to sliding. The answer is the more the resistance to sliding. The</span> coefficient of friction<span> is a measure of how easily one object moves over another object. It is a ratio of: Force to move the object / weight of the object (or Normal Force)</span>