Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
<span>node spacing = half of wavelength = 3 cm
velocity = 10 cm/s = freq * wavelength
hench freq = 10/6 = 5/3 = 1.7 hz</span>
Answer:
What do you need help with?
Explanation:
Answer:60 ohms
Explanation:
R1=30 ohms
R2=15 ohms
R3=15 ohms
Let the total resistance be R
R=R1 + R2 + R3
R=30 + 15 +15
R=60
Total resistance is 60 ohms
the same with that of products
Explanation:
In a chemical reaction, the total charge of the reactants must be the same with that of products.
Charges must be conserved or balanced in chemical reactions.
- In both acidic and basic/neutral medium electrons are used to balance the charge.
- The appropriate number of electrons is added to the side with a larger charge.
- One electron is used to balance each positive charge.
- This ensures that the sum of charges on both sides the same.
Learn more:
Balanced equation brainly.com/question/5297242
#learnwithBrainly