Answer:
The applied force is greater than the frictional force.
Explanation:
the chair moves at <u>a constant speed</u><u> </u><u>therefore</u><u>,</u><u> </u><u>the</u><u> </u><u>answer</u><u> </u><u>is</u><u> </u><u>not</u><u> </u><u>A</u><u> </u><u>or</u><u> </u><u>C</u><u>.</u>
if there is no friction then the chair <u>would accelerate and it would not be at a constant speed</u><u>.</u>
hence, the only possible answer is B.
To find <em>Speed </em>you divide distance by time.
Reasoning:
Displacement is the change in an object's position from the origin.
To find Acceleration you use the equation a=v^2/r
To find Velocity you divide the distance by the time it takes to travel that distance, then you add your direction to it.
<em>To find speed you use distance is over time</em>
The car undergoes an acceleration <em>a</em> such that
(45.0 km/h)² - 0² = 2 <em>a</em> (90 m)
90 m = 0.09 km, so
(45.0 km/h)² - 0² = 2 <em>a</em> (0.09 km)
Solve for <em>a</em> :
<em>a</em> = (45.0 km/h)² / (2 (0.09 km)) = 11,250 km/h²
Ignoring friction, the net force acting on the car points in the direction of its movement (it's also pulled down by gravity, but the ground pushes back up). Newton's second law then says that the net force <em>F</em> is equal to the mass <em>m</em> times the acceleration <em>a</em>, so that
<em>F</em> = (4500 kg) (11,250 km/h²)
Recall that Newtons (N) are measured as
1 N = 1 kg • m/s²
so we should convert everything accordingly:
11,250 km/h² = (11,250 km/h²) (1000 m/km) (1/3600 h/s)² ≈ 0.868 m/s²
Then the force is
<em>F</em> = (4500 kg) (0.868 m/s²) = 3906.25 N ≈ 3900 N
Not really as acceleration is rate of change of velocity therefore zero acceleration would Mean that the velocity is constant
Answer:
Radioactive decay is the spontaneous breakdown of an atomic nucleus resulting in the release of energy and matter from the nucleus. Remember that a radioisotope has unstable nuclei that does not have enough binding energy to hold the nucleus together.
Explanation: