Answer:
The young tree, originally bent, has been brought into the vertical position by adjusting the three guy-wire tensions to AB = 7 lb, AC = 8 lb, and AD = 10 lb. Determine the force and moment reactions at the trunk base point O. Neglect the weight of the tree.
C and D are 3.1' from the y axis B and C are 5.4' away from the x axis and A has a height of 5.2'
Explanation:
See attached picture.
Answer:
18.1 × 10⁻⁶ A = 18.1 μA
Explanation:
The current I in the wire is I = ∫∫J(r)rdrdθ
Since J(r) = Br, in the cylindrical wire. With width of 10.0 μm, dr = 10.0 μm. r = 1.20 mm. We have a differential current dI. We integrate first by integrating dθ from θ = 0 to θ = 2π.
So, dI = J(r)rdrdθ
dI/dr = ∫J(r)rdθ = ∫Br²dθ = Br²∫dθ = 2πBr²
Now I = (dI/dr)dr at r = 1.20 mm = 1.20 × 10⁻³ m and dr = 10.0 μm = 0.010 mm = 0.010 × 10⁻³ m
I = (2πBr²)dr = 2π × 2.00 × 10⁵ A/m³ × (1.20 × 10⁻³ m)² × 0.010 × 10⁻³ m = 0.181 × 10⁻⁴ A = 18.1 × 10⁻⁶ A = 18.1 μA
Answer:
990 J
Explanation:
Kinetic energy is:
KE = ½ mv²
Given m = 55 kg and v = 6 m/s:
KE = ½ (55 kg) (6 m/s)²
KE = 990 J
Answer:
C. the product of the power rating of the light bulb and the time that it remains lit.
Explanation:
The power rating of the light is bulb is defined as the energy supplied to the light bulb divided by the time the bulb is lit up. Therefore,

where,
E = Energy Supplied to the bulb = Energy stored in capacitor = ?
P = Power rating of the bulb
t = time the bulb is lit up
Hence, the correct option is:
<u>C. the product of the power rating of the light bulb and the time that it remains lit.</u>
The right answer for the question that is being asked and shown above is that: "<span>C) Both liquefy due to heat " the </span>statement that best describes a similarity between asteroids and comets is that <span>C) Both liquefy due to heat </span>