Answers:
A: Angular velocity
B: Linear velocity
C: Linear Distance
Given:
Radius of the rope r=30cm=0.3m
Angular distance=10 revolutions
Time taken t=2seconds
To find:
A: Angular velocity in radians
B: Linear speed
C: Distance covered in 5 seconds
<u>Step by Step Explanations:</u>
Solution:
A: Angular velocity in radians;
According to the formula, Angular velocity can be calculated as
Angular Velocity = angular distance/ time
Where =Angular velocity
=Angular distance=10 revolutions
Changing revolutions to radians multiply with , so that we get
=62.80 rad/rev
=Change in time
Substitute the known values in the above equation we get
=62.80 / 2
B. Linear speed of the rope;
As per the formula
Linear speed = angular speed × radius
Where =Angular velocity
v=Linear speed of the rope
r=Radius of the rope
Substitute the known values in the above equation we get
C. Dsitance covered in 5 seconds;
Linear distance = linear speed × time
Where d= Linear distance of the rope
v=Linear speed of the rope
t=Time taken
Substitute the known values in the above equation we get
Result:
Thus A: Angular velocity of the rope
B Linear speed of the rope
C: Distance covered in 5 seconds