Answer:
H₀ = 1.6 x 10⁻¹⁸ s⁻¹
Explanation:
The Hubble's Constant can be found by the following formula:

where,
H₀ = Hubble's Constant = ?
v = speed of galaxy = 30000 km/s = 3 x 10⁷ m/s
D = Distacance = 600 Mpc = (6 x 10⁸ pc)(3.086 x 10¹⁶ m/1 pc)
D = 18.52 x 10²⁴ m
Therefore,

<u>H₀ = 1.6 x 10⁻¹⁸ s⁻¹</u>
Answer:
x ≈ 56 m
Explanation:
vertical initial velocity =
= 25 m/s* sin(30°)= 12.5 m/s
height = h

t- time is found solving quadratic equation.
horizontal velocity = 
Horizontal velocity is constant, so distance 
Answer:


Explanation:
From the question we are told that
Initial velocity of 60 m/s
Wind speed 
Generally Resolving vector mathematically

Generally the equation Pythagoras theorem is given mathematically by



Therefore Resultant velocity (m/s)

b)Resultant direction
Generally the equation for solving Resultant direction

Therefore


You can see the Stud Multipliers right away in your Holoprojector menu under the Extras tab.
Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s