The one fact that needs to be mentioned but isn't given anywhere on or around the graph is: The distance, on the vertical axis, is the distance FROM home. So any point on the graph where the distance is zero ... the point is in the x-axis ... is a point AT home.
Segment D ...
Walking AWAY from home; distance increases as time increases.
Segment B ...
Not walking; distance doesn't change as time increases.
Segment C ...
Walking away from home, but slower than before; distance increases as time increases, but not as fast. Slope is less than segment-D.
Segment A ...
Going home; distance is DEcreasing as time increases. Walking pretty fast ... the slope of the line is steep.
Answer:
The radius of the curve is 9,183.67 m.
Explanation:
Given;
velocity of the jet plane, v = 600 m/s
acceleration of the jet plane, a = 4g = 4 x 9.8 m/s² = 39.2 m/s²
The radius of the curve is calculated from centripetal acceleration formula as given below;

Therefore, the radius of the curve is 9,183.67 m.
Explanation:
Mass of the astronaut, m₁ = 170 kg
Speed of astronaut, v₁ = 2.25 m/s
mass of space capsule, m₂ = 2600 kg
Let v₂ is the speed of the space capsule. It can be calculated using the conservation of momentum as :
initial momentum = final momentum
Since, initial momentum is zero. So,



So, the change in speed of the space capsule is 0.17 m/s. Hence, this is the required solution.
Answer:
the required revolution per hour is 28.6849
Explanation:
Given the data in the question;
we know that the expression for the linear acceleration in terms of angular velocity is;
= rω²
ω² =
/ r
ω = √(
/ r )
where r is the radius of the cylinder
ω is the angular velocity
given that; the centripetal acceleration equal to the acceleration of gravity a
= g = 9.8 m/s²
so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m
Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m
so we substitute
ω = √( 9.8 m/s² / 3909.87 m )
ω = √0.002506477 s²
ω = 0.0500647 ≈ 0.05 rad/s
we know that; 1 rad/s = 9.5493 revolution per minute
ω = 0.05 × 9.5493 RPM
ω = 0.478082 RPM
1 rpm = 60 rph
so
ω = 0.478082 × 60
ω = 28.6849 revolutions per hour
Therefore, the required revolution per hour is 28.6849