Answer: 0.61
Explanation:
This is calculation based on friction.
Since the box rests on a flat surface, the force that exists between them is known as frictional force.
Since the friction is dynamic (velocity is not zero)
The frictional force = kinetic energy gained by the body.
Ff = 1/2mv^2
coefficient of kinetic friction × normal reaction = 1/2mv^2
Since normal reaction is equal to the weight(force acting along the vertical component)
Normal reaction= mg = 50 × 10 = 500N. Therefore,
coefficient of kinetic friction × 500 = 1/2×50×3.5^2
coefficient of kinetic friction = 50×3.5^2/1000
coefficient of kinetic friction= 0.61
Answer:
<h2>14.52 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>14.52 J</h3>
Hope this helps you
The correct answer is "None of the above; all of these statements are valid." All the statements namely, it depends on the particle's charge, it depends on the strength of the external magnetic field, it depends on the particle's velocity, and it acts at right angles to the direction of the particle's motion are all valid. Thank you for posting your question. I hope this answer helped you. Let me know if you need more help.
Answer:
when the center of gravity is within the washing area, the torque returns in the body to its initial position and is in a stable equilibrium
Explanation:
The concept of center of gravity is equivalent to the concept of center of mass, in this place all external forces applied can be considered.
When we analyze the balance of a body that is the torque it is the one that defines the balance
τ = F xd
If the torque tends to restore the body to the initial position the balance is stable, but if the torque has to increase the body's rotation the balance is unstable
. When the body tends to rotate the torque with respect to the pivot point at the base it decreases because the distance from the center of gravity to the end of the base decreases in value, but it has to return it to the initial position, the balance is stable. The critical point of this process is when the center of gravity is at the limit of the body base area in this case the torque is zero; If the body rotates a little more the center of gravity is outside the base, the torque changes sign and has to increase the turn, going to an unstable balance.
In summary, when the center of gravity is within the washing area, the torque returns in the body to its initial position and is in a stable equilibrium.
-- The density of the glass alone doesn't change.
-- The density of the water alone doesn't change.
-- The density of (the entire glass + everything IN IT) increases,
because the part that used to be air (with very low density) is
changed to water (with much higher density than the air had).