Hot air rises<span> because when you </span>heat air<span> (or any other gas for that matter), it expands. When the </span>air<span> expands, it becomes less dense than the </span>air<span>around it. The less dense </span>hot air<span> then floats in the more dense cold </span>air<span> much like wood floats on water because wood is less dense than water.</span>
Electromagnets are used for various purposes but I fathom in this instance, the questioner is asking about how electromagnetics can be used to attraction or repulsion.
Example, electromagnets are used for attraction in cranes which attach them to containers in order to lift them.
Meanwhile, Maglev trains use electromagnets repulsive properties.
<em>Anything</em> that's dropped through air is somewhat affected by air resistance. But, out of that list, the leaf and the balloon are the items that will be affected by air resistance enough so that you can plainly see it.
If you spend some time thinking about it, you can kind of understand why airplane wings and boat propellers are shaped more like leafs and balloons than like bricks and rocks.
Answer:
mass goes down volume remains the same
If it produces 20J of light energy in a second, then that 20J is the 10% of the supply that becomes useful output.
20 J/s = 10% of Supply
20 J/s = (0.1) x (Supply)
Divide each side by 0.1:
Supply = (20 J/s) / (0.1)
<em>Supply = 200 J/s </em>(200 watts)
========================
Here's something to think about: What could you do to make the lamp more efficient ? Answer: Use it for a heater !
If you use it for a heater, then the HEAT is the 'useful' part, and the light is the part that you really don't care about. Suddenly ... bada-boom ... the lamp is 90% efficient !