Answer : The temperature of the air in the tire is, 341 K
Explanation :
Gay-Lussac's Law : It is defined as the pressure of the gas is directly proportional to the temperature of the gas at constant volume and number of moles.

or,

where,
= initial pressure = 198 kPa
= final pressure = 225 kPa
= initial temperature = 
= final temperature = ?
Now put all the given values in the above equation, we get:


Therefore, the temperature of the air in the tire is, 341 K
Answer:
Explanation:
<u>Problem</u>:
In a gender based experiment, the blood pressure of different ages of men is been checked and recorded to determine if there is any correlation. What will be the independent, dependent and controlled variables?
<u>Answer</u>:
A controlled variable is the variable that is left constant throughout the course of an experiment. The controlled variable here is the gender.
A dependent variable is the variable that is been determined or measured during the course of an experiment. The dependent variable here is the blood pressure.
An independent variable is the variable that is intentionally or decidedly altered during the course of an experiment. The independent variable here is the age.
Answer:
pro
Explanation:
c3h8 is propane
3 carbons makes it PROpane
the ANE come from all single bonds
Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.
<h2><u>
Answer:</u></h2>
n = 0.0989 moles
<h2><u>
Explanation:</u></h2>
n = PV / RT
P = 2.09atm
V = 1.13L
R = 0.08206
T = 291K
Plug the numbers in the equation.
n = (2.09atm)(1.13L) / (0.08206)(291K)
n = 0.0989 moles