If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
The answer is either
b A system in which Newton's Laws are valid
or
c A system in which there are no external forces.
Explanation:
not a, and not d
There are energy changes in a closed system.
A closed system obeys the conservation laws in its physical description.
Answer : The power absorbed by the bulb is, 0.600 W
Explanation :
As we know that,
Power = Voltage × Current
Given:
Voltage = 3 V
Current = 200 mA = 0.200 A
Conversion used : (1 mA = 0.001 A)
Now put all the given values in the above formula, we get:
Power = Voltage × Current
Power = 3V × 0.200 A
Power = 0.600 W
Thus, the power absorbed by the bulb is, 0.600 W
Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.
Should be 1.4, I hope this helps you out