Answer:
y-determinant = 2
Step-by-step explanation:
Given the following system of equation:
Let's represent it using a matrix:
![\left[\begin{array}{ccc}1&2\\1&-3\end{array}\right] = \left[\begin{array}{ccc}5\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C1%26-3%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
The y‐numerator determinant is formed by taking the constant terms from the system and placing them in the y‐coefficient positions and retaining the x‐coefficients. Then:
![\left[\begin{array}{ccc}1&5\\1&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%265%5C%5C1%267%5Cend%7Barray%7D%5Cright%5D%20)
y-determinant = (1)(7) - (5)(1) = 2.
Therefore, the y-determinant = 2
1.) D
2.) D
3.) C
4.) C
5.) 56 and 90 I looked for the pattern and followed it.
Get someone else to do 6 I cant
Answer:

Step-by-step explanation:
we know that
<u><em>Combinations</em></u> are a way to calculate the total outcomes of an event where order of the outcomes does not matter.
To calculate combinations, we will use the formula

where
n represents the total number of items
r represents the number of items being chosen at a time.
In this problem

substitute

simplify



Step-by-step explanation:
oh, come one ! you can literally see that one ...
a full rotation on a clock is a full circle and stands therefore for 360°.
for the minute hand these 360° represent 60 minutes.
4 minutes of 60 is a fraction, a ratio, and the same ratio applies then also to 360°.
4/60 = 1/15
360 × 1/15 = 24°
so, 4 minutes represent 24°.
Answer:
139
Step-by-step explanation:
14+14+28+33+33+17 = 139