1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
12

Mrs. LaCross leaves school and accidentally leaves her coffee mug on the roof of her car as shown in the picture below.

Physics
1 answer:
aleksandrvk [35]3 years ago
8 0

Answer:

When she stops at a fast pace the energy and wind will take the cup forward and it will most likeley brake

Explanation:

I'm not entirely sure this is what you were looking for but I hope this helped!

PLEASE MARK ME AS BRAINLIEST

You might be interested in
How much time does it take for a car to accelerate from 3.44 m/s to 20.9 m/s if the average acceleration is 6.00 m/s^3
miv72 [106K]

Do you go to GA Connexus Academy??

4 0
3 years ago
Read 2 more answers
A force that is doing work on a ball when that ball is falling through the air.
Ronch [10]

Answer:

i think the answer is gravity

3 0
3 years ago
What is the pendulum length whose period is 2.0s ?
Mashutka [201]
Formula\ for\ period:\\\ T=2 \pi \sqrt{\frac{L}{g}}\\\ g-gravity=9,8 \frac{m}{s^2} ,\ L-pendulum \ length \\\\ \frac{T}{2 \pi } = \sqrt{ \frac{L}{g} }|square\\\\ \frac{T^2}{2 \pi } = \frac{L}{g} \\\\\ \frac{T^2}{2 \pi }*g=L\\\\ L= \frac{2^2}{2*3,14 }*9,8= \frac{39,2}{6,28} =6,24mT=2 \pi   \sqrt{\frac{L}{g}} \\
 \frac{T}{2 \pi } = \sqrt{ \frac{L}{g} }|square\\
 \frac{T^2}{2 \pi }  = \frac{L}{g} \\
 \frac{T^2}{2 \pi }*g=L\\
L= \frac{2^2}{2*3,14 }*9,8= \frac{39,2}{6,28} =6,24m

7 0
3 years ago
Puck B has twice the mass of puck A. Starting from rest, both pucks are pulled the same distance across frictionless ice by stri
gogolik [260]

Answer:

(a) 1 : 2

(b) same

Explanation:

Let the mass of puck A is m and the mass of puck B is 2 m.

initial speed for both the pucks is same as u and the distance is same for both is s.

let the tension is T for same.

The kinetic energy is given by

K = 0.5 mv^2

(a) As the speed is same, so the kinetic energy depends on the mass.

So, kinetic energy of A : Kinetic energy of B = m : 2m  = 1 : 2

(b) A the distance s same so the final velocities are also same.

8 0
2 years ago
A steel ball rolls with a constant velocity on a tabletop 0.950 m high it rolls off and hit the ground 0.352 m from the edge of
sp2606 [1]

Answer:

0.799 m/s if air resistance is negligible.

Explanation:

For how long is the ball in the air?

Acceleration is constant. The change in the ball's height \Delta h depends on the square of the time:

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t,

where

  • \Delta h is the change in the ball's height.
  • g is the acceleration due to gravity.
  • t is the time for which the ball is in the air.
  • v_0 is the initial vertical velocity of the ball.
  • The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground. \Delta h = -0.950\;\text{m}.
  • Gravity pulls objects toward the earth, so g is also negative. g \approx -9.81\;\text{m}\cdot\text{s}^{-2} near the surface of the earth.
  • Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result, v_0 = 0.

Solve for t.

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t;

\displaystyle -0.950 = \frac{1}{2} \times (-9.81) \cdot t^{2};

\displaystyle t^{2} =\frac{-0.950}{1/2 \times (-9.81)};

t \approx 0.440315\;\text{s}.

What's the initial horizontal velocity of the ball?

  • Horizontal displacement of the ball: \Delta x = 0.352\;\text{m};
  • Time taken: \Delta t = 0.440315\;\text{s}

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.

\begin{aligned}\text{Rolling Velocity}&=\text{Horizontal Velocity} \\&= \text{Average Horizontal Velocity}\\ &=\frac{\Delta x}{\Delta t}=\frac{0.352\;\text{m}}{0.440315\;\text{s}}=0.0799\;\text{m}\cdot\text{s}^{-1}\end{aligned}.

Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.

3 0
3 years ago
Other questions:
  • Phileas Fogg, the character who went around the world in 80 days, was very fussy about his bathwater temperature. It had to be e
    8·1 answer
  • 1)After catching the ball, Sarah throws it back to Julie. However, Sarah throws it too hard so it is over Julie's head when it r
    9·1 answer
  • A black hole in the universe is a An empty region in space b- A massive collapsed star c- A moon that is always turned to its da
    6·1 answer
  • A spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the obse
    13·1 answer
  • The speed of sound is 343 m/s in air at room temperature. What is the wavelength of a B-flat musical note that has a frequency o
    11·1 answer
  • What kind of star gives rise to a type i supernova?
    10·1 answer
  • A man jogs at a speed of 1.6 m/s. His dog waits 1.8 s and then takes off running at a speed of 3 m/s to catch the man. How far w
    7·1 answer
  • The number of electrons an atom would gain or lose when forming ionic bonds. It can be positive, negative or zero.
    14·1 answer
  • A 33 kg cart rests at the top of a hill. If the cart has a PE of 4800J, what is the height of the hill?
    14·2 answers
  • A 60-kg passenger is in an elevator which is initially at rest. The elevator starts to travel downward. It reaches a downward sp
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!