Yes. Kinetic energy is a form of mechanical energy and friction will turn that kinetic energy into heat.
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force,

. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:

Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:

Now we can use the following relationship to find the distance covered by the skier before stopping, S:

where

is the final speed of the skier and

is the initial speed. Substituting numbers, we find:
The relationship between frequency and wavelength for an electromagnetic wave is

where
f is the frequency

is the wavelength

is the speed of light.
For the light in our problem, the frequency is

, so its wavelength is (re-arranging the previous formula)
I would say the answer to your question is A Ferris wheel turning at a constant speed. The reasoning behind this answer is the fact that traveling in a constant direction at a constant speed is not accelerating. The Ferris wheel is the only option that fits this description. The last option would be incorrect due to independent causes such as speed limit changes as well as turns and stops on the highway.
Answers:
1A) Al203
1B) SF6
2) Fe203 - iron oxide