1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rasek [7]
3 years ago
14

By what potential difference must a proton [m_0 = 1.67E-27 kg) be accelerated to have a wavelength lambda = 4.23E-12 m? By what

potential difference must an electron [m_0 = 9.11E-31 kg), be accelerated to have a wavelength lambda = 4.23E-12 m?
Physics
1 answer:
Vinil7 [7]3 years ago
7 0

Explanation:

1. Mass of the proton, m_p=1.67\times 10^{-27}\ kg

Wavelength, \lambda_p=4.23\times 10^{-12}\ m

We need to find the potential difference. The relationship between potential difference and wavelength is given by :

\lambda=\dfrac{h}{\sqrt{2m_pq_pV}}

V=\dfrac{h^2}{2q_pm_p\lambda^2}

V=\dfrac{(6.62\times 10^{-34})^2}{2\times 1.6\times 10^{-19}\times 1.67\times 10^{-27}\times (4.23\times 10^{-12})^2}

V = 45.83 volts

2. Mass of the electron, m_p=9.1\times 10^{-31}\ kg

Wavelength, \lambda_p=4.23\times 10^{-12}\ m

We need to find the potential difference. The relationship between potential difference and wavelength is given by :

\lambda=\dfrac{h}{\sqrt{2m_eq_eV}}

V=\dfrac{h^2}{2q_em_e\lambda^2}

V=\dfrac{(6.62\times 10^{-34})^2}{2\times 1.6\times 10^{-19}\times 9.1\times 10^{-31}\times (4.23\times 10^{-12})^2}

V=6.92\times 10^{34}\ V

V = 84109.27 volt

Hence, this is the required solution.

You might be interested in
An archer puts a 0.30 kg arrow to the bowstring. An average force of 201 N is exerted to draw the string back 1.3 m.a. Assuming
Vlad [161]

Answer:

Explanation:

Given

mass of archer m=0.3\ kg

Average force F_{avg}=201\ N

extension in arrow x=1.3\ m

Work done to stretch the bow with arrow

W=F\cdot x

W=201\times 1.3=261.3\ m

This work done is converted into kinetic Energy of arrow

W=\frac{1}{2}mv^2

where v= velocity of arrow

261.3=\frac{1}{2}\times 0.3\times v^2

v=\sqrt{1742}

v=41.73\ m/s

(b)if arrow is thrown vertically upward then this energy is converted to Potential energy

W=mgh

261.3=0.3\times 9.8\times h

h=\frac{261.3}{0.3\times 9.8}

h=88.87\ m

   

4 0
3 years ago
A cell phone is released from the top with the speed of 10ms what is the speed 3s after?
sergeinik [125]

Answer:

30ms

Explanation:

you need to multiple the 10ms by 3s which gives you 30ms

6 0
3 years ago
A 5.00-A current runs through a 12-gauge copper wire (diameter 2.05 mm) and through a light bulb. Copper has 8.5 * 1028 free ele
evablogger [386]

Answer:

a)n= 3.125 x 10^{19 electrons.

b)J= 1.515 x 10^{6 A/m²

c)V_{d =1.114 x 10^{4m/s

d) see explanation

Explanation:

Current 'I' = 5A =>5C/s

diameter 'd'= 2.05 x 10^{-3 m

radius 'r' = d/2 => 1.025 x 10^{-3 m

no. of electrons 'n'= 8.5 x 10^{28}

a) the amount of electrons pass through the light bulb each second can be determined by:

I= Q/t

Q= I x t => 5 x 1

Q= 5C

As we know that: Q= ne

where e is the charge of electron i.e 1.6 x 10^{-19C

n= Q/e => 5/ 1.6 x 10^{-19

n= 3.125 x 10^{19 electrons.

b)  the current density 'J' in the wire is given by

J= I/A => I/πr²

J= 5 / (3.14 x (1.025x 10^{-3)²)

J= 1.515 x 10^{6 A/m²

c) The typical speed'V_{d' of an electron is given by:

V_{d = \frac{J}{n|q|}

    =1.515 x 10^{6 / 8.5 x 10^{28} x |-1.6 x 10^{-19|

V_{d =1.114 x 10^{4m/s

d) According to these equations,

J= I/A

V_{d = \frac{J}{n|q|} =\frac{I}{nA|q|}

If you were to use wire of twice the diameter, the current density and drift speed will change

Increase in the diameter increase the cross sectional area and decreases the current density as it has inverse relation.

Also drift velocity will decrease as it is inversely proportional to the area

 

5 0
3 years ago
Read 2 more answers
A certain quantity of steam has a temperature of 100.0 oC. To convert this steam into ice at 0.0 oC, energy in the form of heat
KonstantinChe [14]

Answer:

2452.79432 m/s

Explanation:

m = Mass of ice

L_s = Latent heat of steam

s_w = Specific heat of water

L_i = Latent heat of ice

v = Velocity of ice

\Delta T = Change in temperature

Amount of heat required for steam

Q_1=mL_s\\\Rightarrow Q_1=m(2.256\times 10^6)

Heat released from water at 100 °C

Q_2=ms_w\Delta T\\\Rightarrow Q_2=m4186\times (100-0)\\\Rightarrow Q_2=m0.4186\times 10^6

Heat released from water at 0 °C

Q_3=mL_i\\\Rightarrow Q_3=m(333.5\times 10^3)\\\Rightarrow Q_3=m(0.3335\times 10^6)

Total heat released is

Q=Q_1+Q_2+Q_3\\\Rightarrow Q=m(2.256\times 10^6)+m0.4186\times 10^6+m(0.3335\times 10^6)\\\Rightarrow Q=3008100m

The kinetic energy of the bullet will balance the heat

K=Q\\\Rightarrow \frac{1}{2}mv^2=3008100m\\\Rightarrow v=\sqrt{2\times 3008100}\\\Rightarrow v=2452.79432\ m/s

The velocity of the ice would be 2452.79432 m/s

6 0
4 years ago
5. The condition of the road surface affects total stopping distance.<br>A. true<br>B. false​
Tom [10]

Answer:

A true

Explanation:

Can you please give me brainiest.

7 0
4 years ago
Other questions:
  • Consider an element with energy levels E 0 and E ∗ and degeneracies of those energy levels g 0 and g ∗ , respectively. Determine
    10·1 answer
  • While running around the track at school, Milt notices that he runs due East in the 100m homestretch and due West on the 100m ba
    14·2 answers
  • The position of a ball as a function of time is given by
    9·1 answer
  • When two waves are moving toward each other, and their crests line up with each other, it results in a wave with greater amplitu
    6·1 answer
  • What can electricty from solar power be used for​
    14·1 answer
  • When a wave propagates through a medium the molecules of the medium?
    15·1 answer
  • An ambulance with a siren emitting a whine at 1800 hz overtakes and passes a cyclist pedaling a bike at 2.23 m/s. after being pa
    11·1 answer
  • The rotating loop in an AC generator is a square l on each side. It is rotated at frequency f in a uniform field of B. The gener
    13·1 answer
  • A 74.1 kg high jumper leaves the ground with
    13·1 answer
  • A student measured the maximum mass of salt that can dissolve in 100mL of water at five different temperatures. Which variable s
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!