Answer:
400 N
Explanation:
By the law of friction,

is the maximum frictional force,
is the coefficient of friction and
is the reaction on the refrigerator. On a horizontal surface, the reaction is equal to the weight of the refrigerator.


While not moving, the fricition on the refrigerator is static friction. So, 

This is the maximum frictional force and is more than the applied horizontal force of 400 N. Frictional force cannot be more than the applied force, else it would actually pull the refrigerator backwards (a strange thing, if it were to happen). It is equal to the extent of the applied force because the applied force is not enough to overcome the maximum.
Hence the frictional force is 400 N.
PS: Note that we do not use the coefficient of kinetic friction because applied force could not overcome the static friction.
Answer:
85 miles .
Explanation:
Displacement along the 110 South freeway = 260 - 150 = 110 miles
Displacement along the 110 North freeway = 150 - 175 = - 25 miles
Net displacement = 110 - 25 = 85 miles
So Joey's displacement from the 260 mile marker is 85 miles .
Answer:
baking the cake batter
Explanation:
Baking the cake batter will indicate that chemical change has occurred here. What is a chemical change?
- A chemical change is one in which a new kind of matter is formed.
- It is usually accompanied by energy either evolution or absorption of energy in form of heat or light or both.
- The process is irreversible.
- When the batter bakes, a new substance different from the cake mix is obtainable.
- We cannot get back the ingredient from this baked cake. It is impossible.
- This is good indicator of chemical change.
Answer:
answer below
Explanation:
Displacement of the student is 739 m due North and it takes 162 s.
We need to find the student's average velocity. Using formula of velocity.
Velocity = displacement/time
v= 739/162
v= 4.56
Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N