Complete question is;
Jason works for a moving company. A 75 kg wooden crate is sitting on the wooden ramp of his truck; the ramp is angled at 11°.
What is the magnitude of the force, directed parallel to the ramp, that he needs to exert on the crate to get it to start moving UP the ramp?
Answer:
F = 501.5 N
Explanation:
We are given;
Mass of wooden crate; m = 75 kg
Angle of ramp; θ = 11°
Now, for the wooden crate to slide upwards, it means that the force of friction would be acting in an opposite to the slide along the inclined plane. Thus, the force will be given by;
F = mgsin θ + μmg cos θ
From online values, coefficient of friction between wooden surfaces is μ = 0.5
Thus;
F = (75 × 9.81 × sin 11) + (0.5 × 75 × 9.81 × cos 11)
F = 501.5 N
Answer:
a) Frope= 71.7 N
b) Frope=6.7 N
Explanation:
In the figure the skier is simulated as an object, "a box".
a) At constant velocity we can say that the object is in equilibrium, so we apply the Newton's first law:
∑F=0
Frope=w*sen6.8°
Frope=71.71N
Take into account that w is the weight that is calculated as mass per gravitiy constant:
w=m*g


b) In this case the system has an acceleration of 0.109m/s2. Then, we apply Newton's second law of motion:
F=m*a
F=61.8Kg*0.109m/s2
Frope=6.73N
Answer: The decibel scale is a logarithmic scale where each bel or 10 decibels correspondents to a factor of ten. A power intensity of 10^(-12) watts per square meter is the standard reference for a SPL of 0 db. So an SPL of 98 db corresponds to a power intensity of 10^(9.8)*10^(-12) or 10^(9.8–12) w/m^2.
0.006309573 w/m^2.
You can also readily find the value for any given SPL using the online calculator at: http://www.sengpielaudio.com/calculator-soundlevel.htm
Explanation:
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
The answer is D I took the test