1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
3 years ago
5

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of g

yration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.
Physics
1 answer:
Morgarella [4.7K]3 years ago
6 0

Here is the full question:

The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:  

k=\sqrt{\frac{I}{M} }

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.

Answer:

a) 0.85 m

b) 0.98 m

c) 0.76 m

Explanation:

Given that: the radius of gyration  k=\sqrt{\frac{I}{M} }

So, moment of rotational inertia (I) of a cylinder about it axis = \frac{MR^2}{2}

k=\sqrt{\frac{\frac{MR^2}{2}}{M} }

k=\sqrt{{\frac{MR^2}{2}}* \frac{1}{M} }

k=\sqrt{{\frac{R^2}{2}}

k={\frac{R}{\sqrt{2}}

k={\frac{1.20m}{\sqrt{2}}

k = 0.8455 m

k ≅ 0.85 m

For the spherical shell of radius

(I) = \frac{2}{3}MR^2

k = \sqrt{\frac{\frac{2}{3}MR^2}{M}  }

k = \sqrt{\frac{2}{3} R^2}

k = \sqrt{\frac{2}{3} }*R

k = \sqrt{\frac{2}{3}}  *1.20

k = 0.9797 m

k ≅ 0.98 m

For the solid sphere of  radius

(I) = \frac{2}{5}MR^2

k = \sqrt{\frac{\frac{2}{5}MR^2}{M}  }

k = \sqrt{\frac{2}{5} R^2}

k = \sqrt{\frac{2}{5} }*R

k = \sqrt{\frac{2}{5}}  *1.20

k = 0.7560

k ≅ 0.76 m

You might be interested in
Four power transistors, each dissipating 12 W, are mounted on a thin vertical aluminum plate 22 cm 3 22 cm in size. The heat gen
Sveta_85 [38]

Answer:

The temperature of the Aluminium plate 44.84⁰C

Explanation:

Number of transistors = 4

Since the heat dissipated by each transistor is 12W

Total heat dissipated, Q = 4 * 12 = 48 W

Q = 48 W

Cross sectional Area of the Aluminium plate, A = 2(l * b)

l = Length of the aluminium plate = 22 cm = 0.22 m

b = width of the aluminium plate = 22 cm = 0.22 m

A =2( 0.22 * 0.22 )

A = 0.0968 m²

From the heat balance equation, Q = hAΔT

h = 25 W/m²·K

A = 0.0968 m²

ΔT = T - T(air)

T(air) = 25°C

ΔT = T - 25°C

Q = 25 * 0.0968 * (  T - 25)

Q = 2.42 (T - 25)

Substitute Q = 48 into the equation above

48 =  2.42 (T - 25)

T - 25 = 19.84

T = 25 + 19.84

T = 44.84 ⁰C

6 0
3 years ago
Which statement is true? The speed of sound in air is inversely proportional to the temperature of the air. The speed of sound i
sasho [114]
<span> the speed of sound in air is directly proportional to the temperature of the air. The speed of sound depends on the temperature of the surrounding air, this can be represented by a speed of sound in air formula: v = 331m/s + 0.6m/s/C * T (where T is temperature)</span>
6 0
2 years ago
Read 2 more answers
A jogger runs by a river with a velocity of 7 m s relative to the ground. A leaf floating on the river moves with a velocity of
Hunter-Best [27]

Answer:

The velocity of the leaf relative to the jogger is 5 m/s.                    

Explanation:

Given that,

Velocity of jogger wrt to the ground, V_j=7\ m/s

velocity of leaf wrt the ground, v_i=2\ m/s

We need to find the velocity of the leaf relative to the jogger. Let it is equal to V. So, it is given by :

V=v_j-v_i\\\\V=7-2\\\\V=5\ m/s

So, the velocity of the leaf relative to the jogger is 5 m/s. Hence, this is the required solution.

3 0
3 years ago
What is the dimensional formula of young modulas​
LekaFEV [45]

Answer:

The dimensional formula of Young's modulus is [ML^-1T^-2]

6 0
2 years ago
Read 2 more answers
A stone was dropped off a cliff and hit the ground with a speed of 88 ft/s. What is the height (in feet) of the cliff
igor_vitrenko [27]

Answer:

the height (in feet) of the cliff is 121 ft

Explanation:

A stone hit the cliff with

speed, v = 88 ft/s

Acceleration, a= 32 ft/s^2

initial speed, u = 0 ft/s

height is h.

To solve this problem we will apply the linear motion kinematic equations, Equation of motion describes change in velocity, depending on the acceleration and the distance traveled

so, writing the formula of Equation of motion:

v^2 - u^2 = 2*a*h

substituting the appropriate values,

(88)^2 - 0 = 2*32* h

h=(88)^2 / 64

h= 121 ft

hence

the height (in feet) of the cliff is 121 ft

learn more about height of the cliff here:

<u>brainly.com/question/24130198</u>

<u />

#SPJ4

3 0
1 year ago
Other questions:
  • Does a satellite have its greatest speed when it is closest to or farthest from earth?
    6·2 answers
  • . The inner and outer surfaces of a 4-m × 7-m brick wall of thickness 30 cm and thermal conductivity 0.69 W/m-K are maintained a
    5·1 answer
  • A resistance of 1kΩ has a current of 0.25A throughout it when it is connected to the terminal of a battery. What is the potentia
    9·1 answer
  • A battery with an emf of 1.50 V has an internal resistance r. When connected to a resistor R, the terminal voltage is 1.40 V and
    15·1 answer
  • A player kicks a football (from the ground) at an initial angle of 30°. The football is in the air for 2.4 s before it hits an o
    10·1 answer
  • What is the sequence of events for the evolution of the atmosphere in the correct order
    14·1 answer
  • Explai how newton's first law of motion follows from the second law<br>​
    9·1 answer
  • Determine the work done by the constant force. The locomotive of a freight train pulls its cars with a constant force of 15 tons
    13·1 answer
  • I need help plz<br> Help meh
    9·2 answers
  • Is atom on the offficial repository of ubuntu ?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!