Heya user☺☺
All options are wrong here.
The correct answer is..
Work/Time.
Hope this will help☺☺
Escape velocity is the speed that an object needs to be traveling to break free of a planet or moon's gravity well and leave it without further propulsion. For example, a spacecraft leaving the surface of Earth needs to be going 7 miles per second, or nearly 25,000 miles per hour to leave without falling back to the surface or falling into orbit.
You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).
And you know that the potential energy, PE, is [ 1/2 ] k (x^2)
Then, use x = A, to calculate the PE in the point where ME = PE.
ME = PE = [1/2] k (A)^2.
At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2
=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME
So, if PE is 1/4 of ME, KE is 3/4 of ME.
And the answer is 3/4