1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
14

What is the sequence of events for the evolution of the atmosphere in the correct order

Physics
1 answer:
Shtirlitz [24]3 years ago
8 0

Answer:

Big bang theory

Explanation:

You might be interested in
When the air resistance can be ignored the velocity of an object dropped initially from rest is given by the following equation
ad-work [718]

Answer:

I am confused of your question. Do you want final velocity? To get final velocity, use (initial V)+(Gravity*Time)

Explanation:

8 0
4 years ago
Read 2 more answers
An artist working on a piece of metal in his forging studio plunges the hot metal into oil in order to harden it. The metal piec
lutik1710 [3]

Answer:

The temperature of the metal is  T_m  =  376.8 ^o C

Explanation:

From the question we are told that

     The mass of the metal is  M =  60 \ kg

     The specific heat of the metal is  c_p  =  0.1027 kcal/(kg \cdot ^oC)

       The mass of the oil is M_o  =  810 \ kg

       The temperature of the oil is  T_o  =  35^oC

       The specific heat of oil is  c_o  =  0.7167 kcal/(kg \cdot ^oC )

       The equilibrium temperature is T_e  =  39 ^oC

According to the law of energy conservation

     Heat lost by metal  =  heat gained by the oil

So  

   The quantity  of heat lost by the metal is mathematically represented as

               Q =  - Mc_p \Delta T

=>            Q =  -Mc_p (T_m  -  T_c)

Where T_ m  the temperature of metal before immersion

The negative sign show heat lost

The quantity  of gained t by the metal is mathematically represented as      

           Q =  M_o c_o \Delta T

=>        Q =  M_o c_o (T_c - T_o)

So  

         Mc_p (T_m  -  T_c)   =   M_o c_o (T_c - T_o)

substituting values

          - 60 * 0.1027 (T_m  - 39)   =   810 * 0.7167 *  (39 - 35)

=>       T_m  =  376.8 ^o C

         

6 0
3 years ago
POSSIBLE POINTS: 1.92
gogolik [260]

Answer:

jnfal4u4ryhfsbjls5

Explanation:

duehdakjweyedufkbshegygfr

7 0
3 years ago
Please help with this :(
Angelina_Jolie [31]

Answer:

I'm sorry I don't have a answer but I like your pfp

8 0
3 years ago
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
Other questions:
  • Three different planet-star systems, which are far apart from one another, are shown above. The masses of the planets are much l
    15·1 answer
  • What type of circuit is illustrated?
    13·1 answer
  • Orbiting satellites use geothermal energy panels. <br><br> True <br> False
    8·1 answer
  • How are the Earth's crust and jigsaw alike?
    7·2 answers
  • samantha a high school teacher wants to spend more time with her children and is looking for a job in her field. what would be a
    8·2 answers
  • In most electric generators, either the armature (the coil of wire) or the magnetic
    9·1 answer
  • Which diagram best represents the electric field around a negatively charged conducting sphere? (See pic)
    12·1 answer
  • What is random motion? write any two examples​
    15·2 answers
  • Tides can be used to convert kinetic energy into what kind of energy?.
    15·1 answer
  • A 1100 kg racing car accelerates from rest at a constant rate and covers a distance of 50 m in 5 s. what is the car's accelerati
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!