First we will calculate free energy change:
ΔG₀ = ΔH₀ - (T * ΔS₀)
= - 793 kJ - (298 * - 0.319 kJ/K) = - 698 kJ
We know the relation between free energy change and cell potential is:
ΔG₀ = - n F E⁰ where
F = Faraday's constant = 96485 C/mol
n = 2 (given by equation that the electrons involved is 2)
ΔG₀ = - 2 x 96485 x E⁰
- 698 kJ = - 2 x 96485 x E⁰
E⁰ = (698 x 1000) / (2 x 96485) = 3.62 volts
C7H16, where C=12.01, and H=1.01, so the weight of the molecule would be 7(12.01)+16(1.01), or 100.23. The percentage of carbon would be found by ((7*12.01)/100.23)*100=83.88% Carbon
((16*1.01)/100.23)*100=16.12% Hydrogen
B. The partial pressure of N2 is 101 kPa
<h3>Further explanation</h3>
Given
volume = 22.4 L
1.0 mol of nitrogen and 2.0 mol of hydrogen at 0°C
Required
Total pressure and partial pressure
Solution
Ideal gas law :
PV = nRT
n total = 3 mol
T = O °C + 273 = 273 K
P = nRT/V
P = 3 x 0.08205 x 273 / 22.4
P total = 3 atm = 303,975 kPa
P Nitrogen = 1/3 x 303.975 = 101.325 kPa
P Hydrogen = 2/3 x 303.975 = 202.65 kPa
Answer:
A beam balance is an example of a first class lever.
Explanation:
A beam balance is an example of a first class lever. In a first class lever, the fulcrum is between the effort (force) and the load. The effort (force) moves over a large distance to move the load a smaller distance.
Other examples of first class lever are pliers, scissors, a crow bar, a claw hammer, a see-saw and a weighing balance etc.
Answer:
2.00X10^5 x 20gNe/6.02x10^23=6.46x10^-18 but books answer is 797.
Explanation: