The starting angle θθ of a pendulum does not affect its period for θ<<1θ<<1. At higher angles, however, the period TT increases with increasing θθ.
The relation between TT and θθ can be derived by solving the equation of motion of the simple pendulum (from F=ma)
−gsinθ=lθ¨−gainθ=lθ¨
For small angles, θ≪1,θ≪1, and hence sinθ≈θsinθ≈θ. Hence,
θ¨=−glθθ¨=−glθ
This second-order differential equation can be solved to get θ=θ0cos(ωt),ω=gl−−√θ=θ0cos(ωt),ω=gl. The period is thus T=2πω=2πlg−−√T=2πω=2πlg, which is independent of the starting angle θ0θ0.
For large angles, however, the above derivation is invalid. Without going into the derivation, the general expression of the period is T=2πlg−−√(1+θ2016+...)T=2πlg(1+θ0216+...). At large angles, the θ2016θ0216 term starts to grow big and cause
Answer:
When you don't move, you still use energy. This energy is called potential energy, or, stored energy.
When you don't move or do work, you can use energy.
Answer:
a) a = 3.72 m / s², b) a = -18.75 m / s²
Explanation:
a) Let's use kinematics to find the acceleration before the collision
v = v₀ + at
as part of rest the v₀ = 0
a = v / t
Let's reduce the magnitudes to the SI system
v = 115 km / h (1000 m / 1km) (1h / 3600s)
v = 31.94 m / s
v₂ = 60 km / h = 16.66 m / s
l
et's calculate
a = 31.94 / 8.58
a = 3.72 m / s²
b) For the operational average during the collision let's use the relationship between momentum and momentum
I = Δp
F Δt = m v_f - m v₀
F =
F = m [16.66 - 31.94] / 0.815
F = m (-18.75)
Having the force let's use Newton's second law
F = m a
-18.75 m = m a
a = -18.75 m / s²
Answer:
1.24 m/s
Explanation:
Metric unit conversion:
9.25 mm = 0.00925 m
5 mm = 0.005 m
The volume rate that flow through the single pipe is

This volume rate should be constant and divided into the 4 narrower pipes, each of them would have a volume rate of

So the flow speed of each of the narrower pipe is:

Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.