It is an example of Hypermobility.
Answer:
4.5 x 10¹⁴ Hz
666.7 nm
1.8 x 10⁵ J
The color of the emitted light is red
Explanation:
E = energy of photons of light = 2.961 x 10⁻¹⁹ J
f = frequency of the photon
Energy of photons is given as
E = h f
2.961 x 10⁻¹⁹ = (6.63 x 10⁻³⁴) f
f = 4.5 x 10¹⁴ Hz
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of photon
Using the equation
c = f λ
3 x 10⁸ = (4.5 x 10¹⁴) λ
λ = 0.6667 x 10⁻⁶ m
λ = 666.7 x 10⁻⁹ m
λ = 666.7 nm
n = number of photons in 1 mole = 6.023 x 10²³
U = energy of 1 mole of photons
Energy of 1 mole of photons is given as
U = n E
U = (6.023 x 10²³) (2.961 x 10⁻¹⁹)
U = 1.8 x 10⁵ J
The color of the emitted light is red
As the source approaches you, the sound waves are compressed, so
the pitch of the sound is higher than what the source is actually emitting.
Then, after it passes you and begins moving away, the sound waves
are stretched, so the pitch of the sound is lower than what the source
is actually emitting.
The change in velocity (v₂ - v₁) is
<em> (-20) / (the object's mass)</em>.
Call it a crazy hunch, but I can't shake the feeling that there was more
to the question before the part you copied, that mentioned the object's
mass, and its velocity before this force came along.
Answer:
Explanation:
Let fuel is released at the rate of dm / dt where m is mass of the fuel
thrust created on rocket
= d ( mv ) / dt
= v dm / dt
this is equal to force created on the rocket
= 220 dv / dt
so applying newton's law
v dm / dt = 220 dv / dt
v dm = 220 dv
dv / v = dm / 220
integrating on both sides
∫ dv / v = ∫ dm / 220
lnv = ( m₂ - m₁ ) / 220
ln4000 - ln 2500 = ( m₂ - m₁ ) / 220
( m₂ - m₁ ) = 220 x ( ln4000 - ln 2500 )
( m₂ - m₁ ) = 220 x ( 8.29 - 7.82 )
= 103.4 kg .