Answer:
33.2 m
Explanation:
For the first object:
y₀ = 81.5 m
v₀ = 0 m/s
a = -9.8 m/s²
t₀ = 0 s
y = y₀ + v₀ t + ½ at²
y = 81.5 − 4.9t²
For the second object:
y₀ = 0 m
v₀ = 40.0 m/s
a = -9.8 m/s²
t₀ = 2.20 s
y = y₀ + v₀ t + ½ at²
y = 40(t−2.2) − 4.9(t−2.2)²
When they meet:
81.5 − 4.9t² = 40(t−2.2) − 4.9(t−2.2)²
81.5 − 4.9t² = 40t − 88 − 4.9 (t² − 4.4t + 4.84)
81.5 − 4.9t² = 40t − 88 − 4.9t² + 21.56t − 23.716
81.5 = 61.56t − 111.716
193.216 = 61.56t
t = 3.139
The position at that time is:
y = 81.5 − 4.9(3.139)²
y = 33.2
Using conservation of energy and momentum we get m1*v1=(m1+m2)*v2 so rearranging for v2 and plugging the given values in we get:
(200000kg*1.00m/s)/(21000kg)=.952m/s
Answer: 14. 49 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the horizontal distance between the cannon and the ball
is the cannonball initial velocity
since the cannonball was shoot horizontally
is the time
is the final height of the cannonball
is the initial height of the cannonball
is the acceleration due gravity
Isolating from (2):
(3)
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
Your answer is 311.29271 lbs