1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
4 years ago
10

Se desea construir un depósito de agua con forma cilíndrica de radio r y de altura 2·r. A. Hallar la función que proporciona el

volumen del depósito en función de su radio. B. ¿Cuáles deben ser las dimensiones del depósito para que su capacidad sea 100 litros?
Mathematics
1 answer:
musickatia [10]4 years ago
5 0

Answer:

a) La función del volumen del depósito está dada por V = 2\pi\cdot r^{3}, b) Las dimensiones del depósito de 100 litros de capacidad son: Radio = 25.15 centímetros, Altura = 50.30 centímetros.

Step-by-step explanation:

a) Sabemos por Geometría que el volumen de un cilindro recto (V), medido en decímetros cúbicos o litros, es: (Nótese que 1 litro equivale a un decímetro cúbico)

V = \pi\cdot r^{2}\cdot h

Donde:

r - Radio del área transversal del cilindro, medido en decímetros.

h - Altura del cilindro, medida en decímetros.

Si h = 2\cdot r, entonces la fórmula de volumen es:

V = \pi\cdot r^{2}\cdot (2\cdot r)

V = 2\pi\cdot r^{3}

La función del volumen del depósito está dada por V = 2\pi\cdot r^{3}.

b) Si sabemos que V = 100\,L = 100\,dm^{3}, entonces el radio se obtiene al ser despejado de la función hallada en a).

r = \sqrt[3]{\frac{V}{2\pi} }

r = \sqrt[3]{\frac{100\,dm^{3}}{2\pi} }

r \approx 2.515\,dm\,(25.15\,cm)

Ahora, la altura, medida en decímetros, se obtiene a continuación:

h = 2\cdot (2.515\,dm)

h = 5.03\,dm\,(50.30\,cm)

Las dimensiones del depósito de 100 litros de capacidad son: Radio = 25.15 centímetros, Altura = 50.30 centímetros.

You might be interested in
Pleas help ASAP.... Thank you
Bogdan [553]
The answer is (3) 24/26 because Sin is opposite over the hypotenuse so there's how you get 24 over 26
6 0
3 years ago
Read 2 more answers
John bought 3 pineapples and 2 watermelons for $8.50. Sue bought 2 pineapples and 4 watermelons for $13.00. Write and show a sys
AleksAgata [21]
As per your question, total cost of watermelon should end with either 5(for odd quantity) or 0(for even quantity).

If the quantity of watermelon is odd, then the total cost value of pineapple should end with 3 and this is not possible when the cost of pineapple is ₹7.

So let's come to conclusion that the count(quantity) of watermelon should be any one of 0, 2, 4, 6.

If count of watermelon is 6: It will cost ₹30 and for remaining ₹8, we can buy 1 pineapple but still ₹1 will not be utilised. So 1 pineapple is not possible

If count of watermelon is 4: It will cost ₹20 and for remaining ₹18, we can buy 2 pineapple with ₹4 not being utilised. So 2 pineapple is also not possible.

If count of watermelon is 2: It will cost ₹10 and for remaining ₹28, we can buy 4 pineapple with all amount being utilised. We can buy 4 pineapple along with with 2 watermelon for ₹38.

If count of watermelon is 0: It will cost you ₹0 and for remaining ₹38, we can buy 5 pineapple with ₹3 being not utilised. So 5 pineapple is also not possible.

So the answer is 4 pineapple.
5 0
3 years ago
Help me please with math
koban [17]

Answer:

2) y = x - 4

   y = -x + 2

   => x - 4 = -x + 2

   => 2x = -6

   => x = -3

   => y = -3 - 4 = -7

3) y = 3x + 1

   y = 5x - 3

   => 3x + 1 = 5x - 3

   => 2x = 4

   => x = 2

   => y = 3(2) + 1 = 7

4) 2x + y = 8 => y = -2x + 8

   y = x - 7

   => -2x + 8 = x - 7

   => 3x = 15

   => x = 5

   => y = 5 - 7 = -2

7 0
3 years ago
Read 2 more answers
20 points! Will mark the brainliest!
andrew-mc [135]
\dfrac{ \dfrac{x+3}{4x^2-16} }{ \dfrac{2x^2+10x+12}{2x-4} }

-----------------------------------------------------------------------------------
Write the divide fraction horizontally:
-----------------------------------------------------------------------------------

= \dfrac{x+3}{4x^2-16} \div \dfrac{2x^2+10x+12}{2x-4}

-----------------------------------------------------------------------------------
Factorise the numerators and denominators when possible:
-----------------------------------------------------------------------------------

= \dfrac{x+3}{4(x+2)(x-2)} \div \dfrac{ 2(x + 3) (x + 2)}{2(x-2)}

-----------------------------------------------------------------------------------
Convert the divide fraction to multiplication fraction
-----------------------------------------------------------------------------------

= \dfrac{x+3}{4(x+2)(x-2)} \times \dfrac{2(x-2)}{2(x+3)(x+2)}

-----------------------------------------------------------------------------------
Cancel the factors
-----------------------------------------------------------------------------------
= \dfrac{1}{4(x+2)} \times \dfrac{1}{(x+2)}

-----------------------------------------------------------------------------------
Combine to single fraction
-----------------------------------------------------------------------------------

= \dfrac{1}{4(x+2)^2}



4 0
4 years ago
What is the best approximation of the value of w? 1. 4 cm 4. 0 cm 6. 0 cm 7. 3 cm.
MrRissso [65]

To solve the problem we must know about Sine Rule.

<h3>What is Sine rule?</h3>

The sine rule of trigonometry helps us to equate the side of the triangles to the angles of the triangles. It is given by the formula,

\dfrac{Sin\ A}{\alpha} =\dfrac{Sin\ A}{\beta} =\dfrac{Sin\ A}{\gamma}

where

  • Sin A is the angle and α is the length of the side of the triangle opposite to angle A,
  • Sin B is the angle and β is the length of the side of the triangle opposite to angle B,
  • Sin C is the angle and γ is the length of the side of the triangle opposite to angle C.

The value of w is 4.0 cm.

Given to us

  • VW = 3.3 cm,
  • ∠U = 31°,
  • ∠W = 39°,
<h3>Using the sine law,</h3>

\dfrac{Sin\ A}{\alpha} =\dfrac{Sin\ A}{\beta} =\dfrac{Sin\ A}{\gamma}

Substitute the values,

\dfrac{Sin\ W}{w} = \dfrac{Sin\ U}{VW}

\dfrac{Sin\ 39^o}{w}=\dfrac{Sin\ 31^o}{3.3}

w=\dfrac{(Sin\ 39^o) \times 3.3}{Sin\ 31^o}

w = 4.03224 cm ≈ 4.0 cm

Hence, the value of w is 4.0 cm.

Learn more about Sine Rule:

brainly.com/question/17289163

4 0
2 years ago
Other questions:
  • Karl is decorating the outside edge of a square bulletin board.he needs to know the side length of the bulletin board.the area o
    5·1 answer
  • The two colons are for the answer
    12·2 answers
  • Mike and Bill sell cars for Jangle's Auto. Over the past year they sold 640 cars. Assuming Mike sells 3 times as many as Bill, h
    7·2 answers
  • The parent function is f(x)=2^x-1 +3 and the new function is g(x)=2^x+2 +5
    7·1 answer
  • What additional piece of information is needed to prove the triangles congruent by ASA?
    8·1 answer
  • What’s m=y2-y1 divided by x2-x1 for Y2
    6·1 answer
  • Quadrilateral ABCD is dilated at center (0.0) with scale factor 1/2 to form quadrilateral A’B’C’D’. What is the length of A’B’?
    7·1 answer
  • The table shows the cost of birdseed at the Feed n Seed store. What is the constant of proportionality between the cost and the
    7·1 answer
  • 2πr²+πrh=S<br> Solve for r
    10·1 answer
  • What percentage is 20,039.5 of 29,902.03​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!