Answer:
A mixture of blue & red light.
Explanation:
During photosynthesis, the oxygen delivered emanates from water particles and if a weighty isotope of oxygen atom was noticed in delivered sub-atomic oxygen, the water atoms were marked with the hefty isotope.
In order to maximize the growth rate of the plant, the required wavelength of light to be used is a mixture of blue & red light. This is on the grounds that as the absorption optima of plant's photoreceptors are at wavelength frequency of red and blue light, subsequently the combination of red and blue light would be ideal for plant growth and development.
The productivity of red (650–665 nm) LEDs on plant development is straightforward on the grounds that these wavelength frequencies entirely fit with the retention pinnacle of chlorophylls and phytochrome, while the enhanced blue light presented the possibility that development under regular light could be mirrored utilizing blue and red LEDs with negligible use of energy.
At stp conditions (
), the speed of sound is
The sound wave moves by uniform motion, so we can use the basic relationship between space, time and velocity:
where S is the distance covered by the sound wave in a time t. In our problem, t=3.00 s, therefore the distance covered by the sound wave is
The tension has to hold the part of the weight in the direction of the string:
T = mg*cos(theta)
Theta=0, whole weight, theta=90, T=0, if the pendulum is horizontal, the string will be loose! Yeah
<span>Rising or falling, it does not change.</span>
If you count the number of seconds between the flash of lightning and the sound of thunder, and then divide by 5, you'll get the distance in miles to the lightning: 5 seconds = 1 mile, 15 seconds = 3 miles, 0 seconds = very close. Keep in mind that you should be in a safe place while counting.