Answer:
Root mean squared velocity is different.
Explanation:
Hello!
In this case, since we have a mixture of oxygen and nitrogen at STP, which is defined as a condition whereas T = 298 K and P = 1 atm, we can infer that these gases have the same temperature, pressure, volume and moles but a different root mean squared velocity according to the following formula:

Since they both have a different molar mass (MM), nitrogen (28.02 g/mol) and oxygen (32.02 g/mol), thus we infer that nitrogen would have a higher root mean squared velocity as its molar mass is less than that of oxygen.
Best regards!
Because there is only one stable ionic compound made up of potassium and chlorine, and that is KCl. So calling is "mono chloride" or similar would be redundant assuming you understand basic chemistry (i.e. knowing oxidation numbers of K is +1 and Cl is -1). When compounds can exist in multiple forms in nature like CO and CO2 you will preferably indicate it through the nomenclature, calling one a monoxide and the other a dioxide.
Plasma membrane,nucleus ,ribosomes
Answer:
Oxygen and sulfur
Explanation:
Alloys consist of metals fused together sometimes with additional components, such as carbon, to prevent metals from corrosion.
Oxygen and sulfur are two compounds consisting of non-metal atoms, O and S. Combining oxygen with sulfur would actually produce sulfur dioxide, a gas, in contrast to a metallic substance that is fused with some other metal or carbon.
That's the reason why combination of sulfur and oxygen wouldn't produce an alloy: it would produce a gas.
Answer:
a. CO2 and H20
Explanation:
Chemically, this combustion process consists of a reaction between methane and oxygen in the air. When this reaction takes place, the result is carbon dioxide (CO2), water (H2O), and a great deal of energy. The following reaction represents the combustion of methane:
CH4[g] + 2 O2[g] -> CO2[g] + 2 H2O[g] + energy
One molecule of methane, (the [g] referred to above means it is gaseous form), combined with two oxygen molecules, react to form a carbon dioxide molecule, and two water molecules usually given off as steam or water vapor during the reaction and energy.