To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years
Answer:11.1
Explanation:
Three significant figures
Answer:
the magnitude of acceleration will be 1.50m/s^2
Explanation:
To calculate your acceleration, you can use your formula that states that the net force on an object is equal to the mass of the object multiplied by the acceleration of the object. Fnet=ma
if you draw out this situation and label the forces you will have your vector towards the right with a magnitude of 20.0N and then your friction vector will be pointing to the left (in other words, in the negative direction) (opposing the direction of movement) with a magnitude of 5.00N, with the 10.0 kg box in the middle.
The net force will be calculated using F1+F2=Fnet where your F1=20.0N and F2= -5.00N (since it is towards the negative direction).
you will find that Fnet=15.0N
With that, plug in the values you know to calculate the acceleration of the block:
Fnet=ma
(15.0N)=(10.0kg)a from her you can divide both sides by 10 to isolate a:
1.50=a (and now make sure to label the units of your answer)
a=1.50m/s^2 (which is the typical unit for acceleration)
The wrong type of lens-Microscope, concave
Explanation:
A microscope Basically uses t<u>wo convex lenses to magnify an object, or specimen.</u>
There are 2 lenses in a microscope
- <u>Object Lens:</u>The lens that is closer to the object
- <u>Eyepiece:</u>The lens that is closer to the eye
Both the object lens and the eyepiece, is a convex lens.
To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.
The tension in the vertical plane will be equivalent to the centripetal force therefore

Here,
m = mass
v = Velocity
r = Radius
The tension in the horizontal plane will be subject to the action of the weight, therefore

Matching both expressions with respect to the tension we will have to


Then we have that,


Rearranging to find the velocity we have that

The value of the angle is 14.5°, the acceleration (g) is 9.8m/s^2 and the radius is



Replacing we have that


Therefore the speed of each seat is 4.492m/s