-- The potential energy of a 12-lb bowling ball up on the shelf
doesn't have anything to do with the temperature of the ball or
the shelf.
-- The potential energy of a jar full of gas does depend on the
temperature of the gas. The warmer it is, the greater its pressure
is, and the more work it can do if you let it out through a little hole
in the jar. If it gets hot enough, it'll have enough potential energy
to blow the jar to smithereens.
Answer:
v = 10 m/s
Explanation:
Given that,
Distance covered by a sprinter, d = 100 m
Time taken by him to reach the finish line, t = 10 s
We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,
v = d/t

Hence, his average velocity is 10 m/s.
Answer:
Explanation:
The process is isothermic, as P V = constant .
work done = 2.303 n RT log P₁ / P₂
= 2.303 x 5 / 29 x 8.3 x 303 log 2 / 1 kJ
= 300.5k J
This energy in work done by the gas will come fro heat supplied as internal energy is constant due to constant temperature.
heat supplied = 300.5k J
specific volume is volume per unit mass
v / m
pv = n RT
pv = m / M RT
v / m = RT / p M
specific volume = RT / p M
option B is correct.
Answer:
Explanation:
The formula for this, the easy one, is
where No is the initial amount of the element, t is the time in years, and H is the half life. Filling in:
and simplifying a bit:
and
N = 48.0(.0625) so
N = 3 mg left after 12.3 years
Absolutely ! If you have two vectors with equal magnitudes and opposite
directions, then one of them is the negative of the other. Their correct
vector sum is zero, and that's exactly the magnitude of the resultant vector.
(Think of fifty football players pulling on each end of the rope in a tug-of-war.
Their forces are equal in magnitude but opposite in sign, and the flag that
hangs from the middle of the rope goes nowhere, because the resultant
force on it is zero.)
This gross, messy explanation is completely applicable when you're totaling up
the x-components or the y-components.