If a boat is going East at 15mph and there is a water current going southeast at 45° then the boat is being drifted southward. So since the current is going at an angle then it has a x and y component. So Rx refers to the x-component force of the current and Ry refers to the y-component of the current, and |R| refers to the magnitude of these forces.
Answer: The physics of evolution had made the moon like it is today....Please watch this video from you tube about the evolution of the moon.
Explanation:
https://youtu.be/UIKmSQqp8wY
To explain, I will use the equations for kinetic and potential energy:

<h3>Potential energy </h3>
Potential energy is the potential an object has to move due to gravity. An object can only have potential energy if 1) <u>gravity is present</u> and 2) <u>it is above the ground at height h</u>. If gravity = 0 or height = 0, there is no potential energy. Example:
An object of 5 kg is sitting on a table 5 meters above the ground on earth (g = 9.8 m/s^2). What is the object's gravitational potential energy? <u>(answer: 5*5*9.8 = 245 J</u>)
(gravitational potential energy is potential energy)
<h3>Kinetic energy</h3>
Kinetic energy is the energy of an object has while in motion. An object can only have kinetic energy if the object has a non-zero velocity (it is moving and not stationary). An example:
An object of 5 kg is moving at 5 m/s. What is the object's kinetic energy? (<u>answer: 5*5 = 25 J</u>)
<h3>Kinetic and Potential Energy</h3>
Sometimes, an object can have both kinetic and potential energy. If an object is moving (kinetic energy) and is above the ground (potential), it will have both. To find the total (mechanical) energy, you can add the kinetic and potential energies together. An example:
An object of 5 kg is moving on a 5 meter table at 10 m/s. What is the objects mechanical (total) energy? (<u>answer: KE = .5(5)(10^2) = 250 J; PE = (5)(9.8)(5) = 245 J; total: 245 + 250 = 495 J</u>)
Answer:
When an object moves in a straight line with a constant acceleration, you can calculate its acceleration if you know how much its velocity changes and how long this takes.
The formula is,
Acceleration = change in velocity / time taken
The equation for acceleration can also be represented as:
a = (v-u) \ t
The change in velocity v – u = 5 – 0 = 5 m/s.
The acceleration = change in velocity ÷ time = 5 m/s ÷ 2 s = 2.5 m/s^2
Answer:
we need to see the answers but probably 1 or -1