Answer:
0.0432 M H2SO4
Explanation:
First, we want to find the moles of MNaOH used. We know that Molarity x Liters = moles. 0.160M x 0.0210L = 0.00336 moles MNaOH
to find the moles of H2SO4, we can use a mol ratio.
0.00336mol MNaOH x (1Mol H2SO4 /2mol MNaOH)
= 0. 00168 mol H2SO4
I found the mol ratio by looking at the coefficients in front of the molecules I knew(MNaOH) and the molecule I needed to find(H2SO4)
then, to find Molarity, we do mol/Liters
0.00168 mol/ 0.0388L =. 0.0432 M H2SO4
You can convert mL to L by dividing by 1000
the significant figures of this problem is 3, so my final answer will also have 3 sig figs.
Moles of lead(Pb) = 1.6x10^23/6.02x10^23 = 0.265 moles.
Weight of lead = moles x atomic weight of lead
= 0.265x207.2
= 54.908 grams.
Hope this helps!
Answer:
pH = 5.47
Explanation:
The equilibrium that takes place is:
HIO ↔ H⁺ + IO⁻
Ka =
= 2.3 * 10⁻¹¹
At equilibrium:
<u>Replacing those values in the equation for Ka and solving for x:</u>

Then [H⁺]=3.39 * 10⁻⁶, thus pH = 5.47
<span>The addition and subtraction of negatively charged electrons can easily change an atom’s charge, because they perpetually spin in valence shells outside the nucleus. It is easier for a neighboring atom to share or steal an electron rather than a positively charged proton, which is found in the nucleus. It requires a strong energy input to split a proton free from other protons and neutrons. thus, the atoms lose or gain electrons from neighboring ones and become what is known as "ions". Hope it helped!</span>
The finagling in the hole