1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
8

In a particular machine, there are 2 gears that interlock; One gear is larger in circumference than the other. The manufacturer

of the gears guarantees that each gear will last for at least 6,000,000,000 revolutions. Assuming that there is no slippage between the 2 gears and that when one gear rotates the other gear also rotates, the larger gear is guaranteed to last how many days longer than the smaller gear?
Physics
1 answer:
Ivahew [28]3 years ago
3 0

this question is incomplete.here is complete question

In a particular machine, there are 2 gears that interlock; One gear is larger in circumference than the other. The manufacturer of the gears guarantees that each gear will last for at least 6,000,000,000 revolutions. Assuming that there is no slippage between the 2 gears and that when one gear rotates the other gear also rotates, the larger gear is guaranteed to last how many days longer than the smaller gear?

(1) The diameter of the larger gear is twice the diameter of smaller gear.

(2) The smaller gear revolves 600 times per minute.

Answer:

Number of days larger gear last longer than small gear=115.74 days

Explanation:

Given Data

Revolution=6,000,000,000 revolutions

diameter of larger gear is twice diameter of smaller gear

Smaller gear revolves=600 times per minute

Number of days larger gear last longer than small gear=?

Solution

No:days=\frac{6,000,000,000}{24*60*60}*((1/300)-(1/600))\\ No:days=115.74days

You might be interested in
Find the velocity in m/s of a swimmer who swims 110m toward the shore in 72s
ruslelena [56]
S=Vt
110=V(72)
110/72=V
V=1.527m/s
4 0
2 years ago
By what are isotopes identified?
pashok25 [27]
BBBBBBBB!!!!! ATOMIC MASSES :D
4 0
3 years ago
A skier of mass 82.9 kg starts from rest at the top of a frictionless incline of height 20 m. At the bottom of the incline, the
ehidna [41]

Answer: 170.67 N

Explanation:

Given

Mass of skier is m=82.9\ kg

Height of the inclination is h=20\ m

Here, the potential energy of the skier is converted into kinetic energy which is consumed by the friction force by applying a constant force that does work to stop the skier.

\Rightarrow mgh=F\cdot x\quad \quad [\text{F=constant friction force}]\\\\\Rightarrow 82.9\times 9.8\times 20=F\cdot 95.2\\\\\Rightarrow F=\dfrac{16,248.4}{95.2}\\\\\Rightarrow F=170.67\ N

Thus, the horizontal friction force is 170.67 N.

7 0
3 years ago
A car accelerates at a rate of 13m/s^2[S]. If the car's initial velocity is 120km/h[N]. What will its final velocity be in m/s,
Delvig [45]

Answer:

the final velocity of the car is 59.33 m/s [N]

Explanation:

Given;

acceleration of the car, a = 13 m/s²

initial velocity of the car, u = 120 km/h = 33.33 m/s

duration of the car motion, t = 2 s

The final velocity of the car in the same direction is calculated as follows;

v = u + at

where;

v is the final velocity of the car

v = 33.33 + (13 x 2)

v = 59.33 m/s [N]

Therefore, the final velocity of the car is 59.33 m/s [N]

6 0
2 years ago
Blood in a carotid artery carrying blood to the head is moving at 0.15 m/s when it reaches a section where plaque has narrowed t
sp2606 [1]

Answer:

26.9 Pa

Explanation:

We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:

A_1 v_1 = A_2 v_2 (1)

where

A_1 is the cross-sectional area of the 1st section of the pipe

A_2 is the cross-sectional area of the 2nd section of the pipe

v_1 is the velocity of the 1st section of the pipe

v_2 is the velocity of the 2nd section of the pipe

In this problem we have:

v_1=0.15 m/s is the velocity of blood in the 1st section

The diameter of the 2nd section is 74% of that of the 1st section, so

d_2=0.74d_1

The cross-sectional area is proportional to the square of the diameter, so:

A_2=(0.74)^2 A_1=0.548 A_1

And solving eq.(1) for v2, we find the final velocity:

v_2=\frac{A_1 v_1}{A_2}=\frac{A_1 (0.15)}{0.548 A_1}=0.274 m/s

Now we can use Bernoulli's equation to find the pressure drop:

p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2

where

\rho=1025 kg/m^3 is the blood density

p_1,p_2 are the initial and final pressure

So the pressure drop is:

p_1 - p_2 = \frac{1}{2}\rho (v_2^2-v_1^2)=\frac{1}{2}(1025)(0.274^2-0.15^2)=26.9 Pa

8 0
3 years ago
Other questions:
  • With what speed must you approach a source of sound to observe a 25% change in frequency?
    14·1 answer
  • In a football game, a receiver is standing still, having just caught a pass. Before he can move, a tackler, running at a velocit
    12·1 answer
  • 2. Calcular la masa de un cuerpo, si al recibir una fuerza, cuya magnitud de
    11·1 answer
  • Some gliders are launched from the ground by means of a winch, which rapidly reels in a towing cable attached to the glider. Wha
    6·1 answer
  • How is the lifetime of a star related to its mass?
    8·1 answer
  • Running up a hill instead of a flat surface will increase which principle of fitness?
    5·2 answers
  • State archimedes principle​
    8·1 answer
  • A basketball has a coefficient of restitution of 0.821 in collisions with the wood floor of a basketball court. The ball is drop
    14·1 answer
  • The song Arirang is an example of korean F_L_ _O N_​
    14·1 answer
  • A current of 2.0 A flows through a circuit containing a motor with a resistance of 12 ohm how much energy is converted if the mo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!