S=Vt
110=V(72)
110/72=V
V=1.527m/s
BBBBBBBB!!!!! ATOMIC MASSES :D
Answer: 170.67 N
Explanation:
Given
Mass of skier is 
Height of the inclination is 
Here, the potential energy of the skier is converted into kinetic energy which is consumed by the friction force by applying a constant force that does work to stop the skier.
![\Rightarrow mgh=F\cdot x\quad \quad [\text{F=constant friction force}]\\\\\Rightarrow 82.9\times 9.8\times 20=F\cdot 95.2\\\\\Rightarrow F=\dfrac{16,248.4}{95.2}\\\\\Rightarrow F=170.67\ N](https://tex.z-dn.net/?f=%5CRightarrow%20mgh%3DF%5Ccdot%20x%5Cquad%20%5Cquad%20%5B%5Ctext%7BF%3Dconstant%20friction%20force%7D%5D%5C%5C%5C%5C%5CRightarrow%2082.9%5Ctimes%209.8%5Ctimes%2020%3DF%5Ccdot%2095.2%5C%5C%5C%5C%5CRightarrow%20F%3D%5Cdfrac%7B16%2C248.4%7D%7B95.2%7D%5C%5C%5C%5C%5CRightarrow%20F%3D170.67%5C%20N)
Thus, the horizontal friction force is 170.67 N.
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + (13 x 2)
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:
