Given:
70 Kilogram hockey
Hit by 0.1 kilogram
50 Newton
Description:
So in this case this bacially means that one object is experiencing a force then another object. So the answer to the question will be 50N.
Answer: 50N (3rd Law)
Hope this helps.
Answer:
a) velocity v = 322.5m/s
b) time t = 19.27s
Explanation:
Note that;
ads = vdv
where
a is acceleration
s is distance
v is velocity
Given;
a = 6 + 0.02s
so,

Remember that
![v = \frac{ds}{dt} \\\frac{ds}{v} = dt\\\int\limits^s_0 {\frac{ds}{\sqrt{12s+0.02s^{2} } } } \, ds = \int\limits^t_0 {} \, dt \\t= (5\sqrt{2} ) ln \frac{| [s + 300 + \sqrt{(s^{2} + 600s)} ] |}{300} .......2](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bds%7D%7Bdt%7D%20%5C%5C%5Cfrac%7Bds%7D%7Bv%7D%20%3D%20dt%5C%5C%5Cint%5Climits%5Es_0%20%7B%5Cfrac%7Bds%7D%7B%5Csqrt%7B12s%2B0.02s%5E%7B2%7D%20%7D%20%7D%20%7D%20%5C%2C%20ds%20%3D%20%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt%20%5C%5Ct%3D%20%20%285%5Csqrt%7B2%7D%20%29%20ln%20%20%5Cfrac%7B%7C%20%5Bs%20%2B%20300%20%2B%20%5Csqrt%7B%28s%5E%7B2%7D%20%20%2B%20600s%29%7D%20%5D%20%7C%7D%7B300%7D%20.......2)
substituting s = 2km =2000m, into equation 1
v = 322.5m/s
substituting s = 2000m into equation 2
t = 19.27s
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
Answer:
<u><em>A. wavelength</em></u>
Explanation:
The others are about sound and how high it is. That has nothing to do with time.