Answer: The small spherical planet called "Glob" has a mass of 7.88×1018 kg and a radius of 6.32×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.44×103 m, above the surface of the planet, before it falls back down.
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Explanation: To find the answer, we need to know about the different equations of planetary motion.
<h3>How to find the initial speed of the rock as it left the astronaut's hand?</h3>
- We have the expression for the initial velocity as,

- Thus, to find v, we have to find the acceleration due to gravity of glob. For this, we have,

- Now, the velocity will become,

<h3>How to find the speed of the satellite?</h3>
- As we know that, by equating both centripetal force and the gravitational force, we get the equation of speed of a satellite as,

Thus, we can conclude that,
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Learn more about the equations of planetary motion here:
brainly.com/question/28108487
#SPJ4
Transparent - Diamond, water, air, prism, cellophane sheet, frosted glass, glasses, clear tape, non colored plastic, lenses
Translucent - Butter paper, parchent paper, plastics, clouds, thin fabrics, colored plastics, tinted glass
Opaque - Computer, phone, book, box, file, stone, can, paper cup, cupboard (wood/steel)
Answer:
or
.
Explanation:
<u>Given:</u>
- Charge on the particle at origin = Q.
- Mass of the moving charged particle,

- Charge on the moving charged particle,

- Distance of the moving charged particle from first at t = 0 time,

- Speed of the moving particle,

For the moving particle to circular motion, the electrostatic force between the two must be balanced by the centripetal force on the moving particle.
The electrostatic force on the moving particle due to the charge Q at origin is given by Coulomb's law as:

where,
is the Coulomb's constant having value 
The centripetal force on the moving particle due to particle at origin is given as:

For the two forces to be balanced,
Out of the choices given, the tool that would be best for Diana to use is the light microscope. The correct answer is B.