Answer:
(a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Explanation:
Given that,
Angular velocity = 110 rev/m
Radius = 4.50 m
(a). We need to calculate the average speed
Using formula of average speed



(b). The average velocity over one revolution is zero because the net displacement is zero in one revolution.
Hence, (a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Explanation:
We know that the sky appears to us like a sphere called as celestial sphere which appears to rotate around an imaginary axis because of Earth's rotation. Since the axis cuts the celestial sphere at celestial poles all the object seems to circle around the celestial poles.
Condition 1: The stars rise and set perpendicular to the horizon
The observer is at the equator
Condition 2: The stars circle the sky parallel to the horizon
The observer is at the Pole of the Earth
Condition 3: The celestial equator passes through the zenith
The observer is at the equator
Condition 4: In the course of a year, all stars are visible
The observer is at the equator
Condition 5: The Sun rises on March 21 and does not set until September 21 (ideally)
The observer is at North Pole
Explanation:
A centripetal force (from Latin centrum, "center" and petere, "to seek") is a force that makes a body follow a curved path. (not sure but hope this helps )
Answer:
1497×10⁵ km
Explanation:
Speed of light in vacuum = 3×10⁵ km/s
Time taken by the light of the Sun to reach the Earth = 8 min and 19 s
Converting to seconds we get
8×60+19 = 499 seconds
Distance = Speed × Time

1 AU = 1497×10⁵ km
The Sun is 1497×10⁵ km from Earth
Answer:
D) 15s
Explanation:
let Te be the period of the block-spring system on earth and Tm be the period of the same system on the moon.let g1 be the gravitational acceleration on earth and g2 be the gravitational acceleration on the moon.
the period of a pendulum is given by:
T = 2π√(L/g)
so on earth:
Te = 2π√(L/g1)
= 6s
on the moon;
Tm = 2π√(L/g2)
since g2 = 1/6 g1 then:
Tm = 2π√(L/(1/6×g1))
= √(6)×2π√(L/(g1))
and 2π√(L/(g1)) = Te = 6s
Tm = (√(6))×6 = 14.7s ≈ 15s
Therefore, the period of the block-spring system on the moon is 15s.