The power of the engine is 320 W.
<u>Explanation:</u>
Power may be defined as the rate of doing work (or) work done per unit time. One unit of energy is used to do the one unit of work.
Power = Work done / Time taken
Given, Force = 80 N, height = 5 m , final velocity = 4 m/s
To calculate the power, we must know the time taken.
To find the time, use the distance and speed formula which is given by
Time = Distance / speed
Here distance = 5 m and speed = 4 m/s
Time = 5 / 4 = 1.25 s.
Now, Power = work done / time
= (F * d) / t = (80 * 5) / 1.25
Power = 320 W.
The standard unit of power is watt (W) which is joule per second.
The force that the book exerts on the table is a normal force, not a weight force. (The book's weight doesn't act on the table, it acts on the book.) It's equal in magnitude to the weight of the book, again, because of the first law.
Answer:
Following are the solution to the given question:
Explanation:
Its best approach to this measurement ought to be to indicate that there was a mistake throughout the calculation, as well as the gathering of further details while researching cells for bacteria, directly measuring the cell length of a colony. This chart illustrates its data, which scientists have observed that there's still a measurement.
Answer:
The strongest lines are at 337.1 nm wavelength in the ultraviolet. Other lines have been reported at 357.6 nm, also ultraviolet. This information refers to the second positive system of molecular nitrogen, which is by far the most common.
Explanation:
Answer:
The initial and final temperatures of the gas is 300 K and 600 K.
Explanation:
Given that,
Entropy of the gas = 14.41 J/K
Absorb gas = 6236 J
We know that,

At constant pressure,



Put the value into the formula




...(I)
We need to calculate the initial and final temperatures of the gas
Using formula of energy

Put the value into the formula




Put the value of T₂


Put the value of T₁ in equation (I)


Hence, The initial and final temperatures of the gas is 300 K and 600 K.