The balanced reaction
is:
4NH3 + 3O2 --> 2N2 + 6H2O
<span>We
are given the amount of reactants to be used for the reaction. This
will be the starting point of our calculation.</span>
83.7g of O2 ( 1 mol / 32 g) = 2.62 mol O2
2.81 moles of NH3
From the balanced reaction, we have a 4:3 ratio of the reactants. The limiting reactant would be oxygen. We will use the amount for oxygen for further calculations.
<span>2.62 mol O2</span><span> (6 mol H2O / 3 mol O2) (18.02 g H2O / 1 mol H2O) = 94.42 g H2O</span>
Answer:
[Ne] 3s2 3p2
Explanation:
Neon (Ne) is the noble gas right before silicon (Si).
Then right after neon is the 3s subshell. It has two electrons and is full.
After 3s comes the 3p subshell, and silicon only has two electrons in the 3p subshell (you can just count the electrons in each subshell on your periodic table).
The number that represents the coefficient on the product side of the chemical reaction,
is 7.
<h3>Coefficients of chemical equations</h3>
In equations representing chemical reactions, the coefficient of each reactant or product of a reaction is the number that comes on the left-hand side just before the chemical formula.
The coefficient of each species in a chemical reaction is obtainable when the equation of the reaction is balanced.
For example, in the following equation: 2A + B = 3C + D
The coefficients of A, B, C, and D are 2, 1, 3, and 1 respectively.
Applying this to the product side of a chemical reaction;
It means that the coefficient of the product is 7.
More on coefficients of chemical equations can be found here: brainly.com/question/28294176
#SPJ1
No, but we can make it conduct energy by adding salt
The ideal gas under STP is 22.4 L/mol. While the gas has a rule of P1V1/T1=P2V2/T2. So the volume under 101 kPa and 273 K is 0.2*22.4=4.48 L.