Answer:
7.6 days
Explanation:
Radon is a radioactive element and Radon-222 is it's most stable isotope. The half-life of Radon-222 has been found to be approximately 3.8 days.
Let, the initial amount of the Rn-222 = 1 = A
Final amount =
= A'
We will use the following relation for calculating time elapsed in the decay

Thus,

We can write is as,

Since the base in both sides are equal, powers can also be equal and thus,

So, t = 7.6 days
Answer: It will take 8.2 minutes until the concentration decreases to 0.055 M
Explanation:
The time after which 99.9% reactions gets completed is 40 minutes
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) for completion of half life:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


b) Time taken for 0.085 M to decrease to 0.055 M


Thus it will take 8.2 minutes until the concentration decreases to 0.055 M
Answer:
b
. Irradiated food is shown to not be radioactive.
Explanation:
If it can be proven that irradiated food is not radioactive, then it will effective dispute the idea that irradiated food are less safe to eat.
- An irradiated food is one in which ionizing radiations have been employed to improve food quality.
- Thus, bacteria and other food spoilers can be exterminated from the food.
- Most irradiated food do not contain radiation and are fit for consumption.
If it can be proven, that this is true, then it will challenge the idea that irradiated foods are not safe.
Answer:
Answer:- 1467 K
Solution:- It asks to calculate the kelvin temperature of the light bulb. Looking at the given info, it is based on ideal gas law equation, PV=nRT.
We are going to use this formula:
E° = 0.0592/ n * ㏒K
when E° is the standard state cell potential
and n is number of moles of electrons transferred in the balanced equation
for the reaction of the cell.
Sr(s) + Mg2+ (aq) ↔ Sr2+(aq) + Mg(s)
we can get it by using the given balanced equation, we here have 2 electrons
transferred so, n = 2
and K the equilibrium constant = 3.69 x 10^17
so, by substitution:
∴ E° = 0.0592 / 2 * ㏒ (3.69 x 10^17)
= 0.52 V