Answer 1) In the given reaction of sulfuric acid


On addition of nitrogen monoxide gas the reaction rate increases and more amount of product is formed.
So, it is clear that NO is the catalyst in this reaction.
Answer 2) This can be proven that NO is catalyst because it increases the rate of the reaction, but it is not consumed during the reaction, and it also gets regenerated at the end of reaction.
Hence, nitrogen mono oxide is considered as the catalyst in the given reaction.
Answer 3) It increases the rate of reaction by decreasing the activation energy of the reaction. Also it can be clearly seen in this reaction the NO is reacting with oxygen to lower the energy of activation. So, it is providing an alternative pathway for proceeding the reaction. This all confirms the assumptions of NO being the catalyst.

Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
Answer:
Mass = 15.1 g
Explanation:
Given data:
Number of moles of NaBH₄ = 0.40 mol
Mass in gram = ?
Solution:
Formula:
Mass = number of moles × molar mass
Molar mass of NaBH₄ = 37.83 g/mol
By putting values,
Mass = 0.40 mol × 37.83 g/mol
Mass = 15.1 g
Answer:
dsfewrewr
Explanation:
https://newsengin.zendesk.com/hc/vew/community/posts/360056216292-%D9%85%D9%88%D9%82%D8%B9-%D8%A7%D9%84%D9%86%D9%88%D8%B1-%D9%85%D8%B3%D9%84%D8%B3%D9%84-%D8%A7%D9%84%D9%85%D8%A4%D8%B3%D8%B3-%D8%B9%D8%AB%D9%85%D8%A7%D9%86-%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A9-8-%D8%A7%D9%84%D8%AB%D8%A7%D9%85%D9%86%D8%A9-%D9%83%D8%A7%D9%85%D9%84%D8%A9-%D9%85%D8%AA%D8%B1%D8%AC%D9%85%D8%A9-%D9%82%D9%8A%D8%A7%D9%85%D8%A9-%D8%B9%D8%AB%D9%85%D8%A7%D9%86-%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A9-8-%D9%83%D8%A7%D9%85%D9%84%D8%A9-%D9%85%D8%AA%D8%B1%D8%AC%D9%85%D8%A9
https://newsengin.zendesk.com/hc/pst/community/posts/360056216252-Serial-TV-%D9%85%D8%B3%D9%84%D8%B3%D9%84-%D8%A7%D9%84%D9%85%D8%A4%D8%B3%D8%B3-%D8%B9%D8%AB%D9%85%D8%A7%D9%86-%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A9-7-%D8%A7%D9%84%D8%B3%D8%A7%D8%A8%D8%B9%D8%A9-%D8%A7%D9%88%D9%86%D9%84%D8%A7%D9%8A%D9%86-%D8%A7%D9%84%D9%85%D8%A4%D8%B3%D8%B3-%D8%B9%D8%AB%D9%85%D8%A7%D9%86-%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A9-7-%D9%83%D8%A7%D9%85%D9%84%D8%A9-%D9%85%D8%AA%D8%B1%D8%AC%D9%85%D8%A9-HD
https://newsengin.zendesk.com/hc/vew/community/posts/360056216292-%D9%85%D9%88%D9%82%D8%B9-%D8%A7%D9%84%D9%86%D9%88%D8%B1-%D9%85%D8%B3%D9%84%D8%B3%D9%84-%D8%A7%D9%84%D9%85%D8%A4%D8%B3%D8%B3-%D8%B9%D8%AB%D9%85%D8%A7%D9%86-%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A9-8-%D8%A7%D9%84%D8%AB%D8%A7%D9%85%D9%86%D8%A9-%D9%83%D8%A7%D9%85%D9%84%D8%A9-%D9%85%D8%AA%D8%B1%D8%AC%D9%85%D8%A9-%D9%82%D9%8A%D8%A7%D9%85%D8%A9-%D8%B9%D8%AB%D9%85%D8%A7%D9%86-%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A9-8-%D9%83%D8%A7%D9%85%D9%84%D8%A9-%D9%85%D8%AA%D8%B1%D8%AC%D9%85%D8%A9
Answer:
When hydrogen is passed over hot ferric oxide (FeO) hydrogen reacts with oxygen present in the compound and forms water (H2O) and pure Iron
Explanation: