Answer:
I think b) is the answer I solve it but
Answer:
A(-6,-5) B(4,1)
Step-by-step explanation:
am not that sure
Answer:
The maximum revenue is 16000 dollars (at p = 40)
Step-by-step explanation:
One way to find the maximum value is derivatives. The first derivative is used to find where the slope of function will be zero.
Given function is:

Taking derivative wrt p

Now putting R'(p) = 0

As p is is positive and the second derivative is -20, the function will have maximum value at p = 40
Putting p=40 in function

The maximum revenue is 16000 dollars (at p = 40)
Answer:
I believe it would be 86 cups left of milk.
Step-by-step explanation:
8 gallons= 128 cups of milk
3 quarts= 12 cups
Plus the 1 cup of milk he had equals 141 of milk in total
Now the customer wants 2 gallons (32 cups of milk), 5 quarts ( 20 cups), and 3 cups which is 55 cups of milk.
Now we minus what the customer bought from what the shop keeper had so:
55-141=86
Answer:
a) 
And replacing we got:

b) ![E(80Y^2) =80[ 0^2*0.45 +1^2*0.2 +2^2*0.3 +3^2*0.05]= 148](https://tex.z-dn.net/?f=%20E%2880Y%5E2%29%20%3D80%5B%200%5E2%2A0.45%20%2B1%5E2%2A0.2%20%2B2%5E2%2A0.3%20%2B3%5E2%2A0.05%5D%3D%20148)
Step-by-step explanation:
Previous concepts
In statistics and probability analysis, the expected value "is calculated by multiplying each of the possible outcomes by the likelihood each outcome will occur and then summing all of those values".
The variance of a random variable Var(X) is the expected value of the squared deviation from the mean of X, E(X).
And the standard deviation of a random variable X is just the square root of the variance.
Solution to the problem
Part a
We have the following distribution function:
Y 0 1 2 3
P(Y) 0.45 0.2 0.3 0.05
And we can calculate the expected value with the following formula:

And replacing we got:

Part b
For this case the new expected value would be given by:

And replacing we got
![E(80Y^2) =80[ 0^2*0.45 +1^2*0.2 +2^2*0.3 +3^2*0.05]= 148](https://tex.z-dn.net/?f=%20E%2880Y%5E2%29%20%3D80%5B%200%5E2%2A0.45%20%2B1%5E2%2A0.2%20%2B2%5E2%2A0.3%20%2B3%5E2%2A0.05%5D%3D%20148)