Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N
Well this all depends on the region you would like to know about. One biome would be The Tundra. This biome is a very bitter cold. Some times the temperature can drop to -45f! So your answer more than likely would be Tundra.
Have a wonderful day user!
Answer:
Control of air–fuel ratio
Oxygen sensors tell the ECU whether the engine is running rich (too much fuel or too little oxygen) or running lean (too much oxygen or too little fuel) as compared to ideal conditions (known as stoichiometric).
Explanation:
I might be wrong but I'm pretty sure It's B