Answer: a) B = 6811N
b) m = 603.2kg
c) 86.8%
Explanation: <em>Buoyant force</em> is a force a fluid exerts on a submerged object.
It can be calculated as:

where:
is density of the fluid the object is in;
is volume of the object;
g is acceleration due to gravity, is constant and equals 9.8m/s²
a) For the hollow plastic sphere, density of water is 1000kg/m³:

B = 6811N
b) Anchored to the bottom, the forces acting on the sphere are <u>Buoyant</u>, <u>Tension</u> and <u>Force due to gravity</u>:
B = T + 
B = T + mg
mg = B - T

Calculating:

m = 603.2kg
c) When the shpere comes to rest on the surface of the water, there are only <u>buoyant</u> <u>and</u> <u>gravity</u> acting on it:
B = m.g



= 0.6032m³
Fraction of the submerged volume is:
=
= 0.868
<u />
<span>In a series circuit with three bulbs, </span><span> </span><span>the remaining two bulbs are not affected if one bulb burns out.</span>
If a bulb goes out in your house, do all other bulbs go out? No.
<span>Final answer: B</span>
Answer:
__________________________________________________
No; the sample could not be aluminum;
since the density of aluminum, " 2.7 g/cm³ " , is NOT close enough to the density of the sample, " 3.04 g/cm³ " .
________________________________________________
Explanation:
________________________________________________
Density is expressed as "mass per unit volume" ;
in which:
"mass, "m", is expressed in units of "g" (grams); and:
"Volume, "V", is expressed in units of "cm³ " (such as in this problem); or in units of "mL" ;
__________________________________________________
{Note the exact conversion: " 1 cm³ = 1 mL " .}.
__________________________________________________
The formula for density: D = m/V ;
Given: The density of aluminum is: 2.7 g/cm³.
Given: A sample has a mass of 52.0 g ; and Volume of 17.1 cm³ ; could it be aluminum?
_________________________________________________________
Let us divide the mass of the sample by the volume of the sample;
by using the formula:
___________________________________________
D = m / V ;
and see if the value is at, or very close to "2.7 g/cm³ ".
If it is, then it could be aluminum.
____________________________________________________
The density for the sample:
D = (52.0 / 17.1) g/cm³ = 3.0409356725146199 g/cm³ ;
→round to "3 significant figures" ;
= 3.04 g/cm³ .
_______________________________________________
No; the sample could not be aluminum; since the density of aluminum,
"2.7 g/cm³ " is NOT close enough to the density of the sample,
"3.04 g/cm³ " .
____________________________________________________
Answer:
The quantity of energy per photon is inversely proportional to the wavelength of the light.
Explanation:
Energy of light is given as
E = hf
where E = energy of the photons,
f = frequency of the light
If the number of photons = n
(E/n) = (h/n) f
Let (E/n) = E'
(h/n) = h'
But the frequency of light is related to wavelength through the relation
v = fλ
where v = speed of light = c
λ = wavelength of light
f = (c/λ)
E' = h' f
Substituting for f
E' = h' (c/λ)
h' and c are both constants, h'×c = K
E' = (K/λ)
So, the quantity of energy per photon is inversely proportional to the wavelength of the light.
Hope this Helps!!!
Answer:
The potential energy has a maximum when the ball is a time that is half of the time for total travel
Explanation:
Generally potential energy is a the varies directly with the height according to this formula

and the ball attains a maximum height when the time is equal to half of the total time taken to travel